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Preface

This book provides a journey through introductory combinatorics that the reader can un-

dertake during one semester, two quarters, or in a independent study or self-study setting. It

is not intended to be encyclopedic. Rather, it surveys a good cross-section of combinatorics

as it has developed within the last century with an eye towards its characteristic brand of

thinking, its interconnections with other mathematical fields, and some of its applications.

Combinatorics can rightly be called the mathematics of counting. More specifically, it

is the mathematics of the enumeration, existence, construction, and optimization questions

concerning finite sets. Here are some brief illustrations.

� Enumeration: How many? How many different 9 � 9 Sudoku boards are there?

This number has been computed exactly and it is astronomical—about 6.6 sextillion.

Determining this number by simply listing every possible board is not a viable ap-

proach. Combinatorics involves mathematical techniques for determining the answer

to a counting question without listing the objects being counted.

� Existence: Is it possible? Take any 25 people living on the earth. Among the members

of this group will you always be able to find four people who all know each other or

else five people who all don’t know each other? Yes: this is guaranteed no matter what

group of 25 you choose. Despite its innocent-sounding nature, this question wasn’t

answered until 1993 and required careful combinatorial analysis as well as thousands

of hours of computer time.

� Construction: Can it be built? The Mariner 9 spacecraft orbited Mars in 1971-72

and sent back photographs that gave a complete picture of the planet’s surface. Your

CD player can play a disc flawlessly despite occasional scratches on the disc’s surface.

Both of these applications involve error-correcting codes that transmit information

with 100% accuracy despite occasional errors in transmission. Construction methods

for many error-correcting codes use combinatorics.

� Optimization: What is the best way? Your car’s GPS navigation system quickly

finds the fastest route from point A to point B. It essentially solves instances of a

combinatorial optimization problem called the shortest path problem, which is but

one of a broad class of network optimization problems that have widespread modern

application.

In this book we consider enumeration, existence, and construction questions.

The examples above rightly suggest that combinatorics has many modern applications.

Counting techniques are indispensable in applied probability when the sample space is

finite and outcomes are equally likely. Combinatorial design theory grew out of a need

vii
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viii Preface

that statisticians had in constructing valid experimental designs. Computer science is re-

plete with applications as combinatorial thinking informs the efficiency of algorithms and

data structures as well as the correctness of recursive procedures. Linear programming and

combinatorial optimization are fields born from the large-scale logistical planning prob-

lems of World War II and now include, among many others, applications to the design of

transportation and telecommunications networks. Operations research, management sci-

ence, and industrial engineering are other fields in which combinatorial analysis is used to

solve important and practical problems.

Beyond specific examples and problems, though, the broader view is that combinato-

rial thinking is beneficial and applicable to many areas of mathematics, statistics, computer

science, and engineering. Two of the largest professional societies in the fields of mathe-

matics and computer science—the Mathematical Association of America (MAA) and the

Association for Computing Machinery (ACM)—recommend that majors and minors in

mathematics and computer science take courses involving a good amount of discrete math-

ematics and combinatorics.

As such, combinatorics is now properly intertwined with modern mathematics. In the

recent past, combinatorics was viewed as a useful set of tools and, at best, a surrogate to

other fields. Now that combinatorics has gelled into a more coherent whole, it is interesting

to see how fields such as calculus, analysis, number theory, abstract and linear algebra, and

differential equations can be used as tools to solve purely combinatorial problems. Some

of those results are true mathematical highlights.

What’s on the tour and what’s not

As mentioned earlier, this book provides an introductory survey of enumeration, existence,

and construction questions. The emphasis is on enumeration and the first five chapters pro-

vide the core material on counting techniques and number families. The remaining chapters

take up graphs, combinatorial designs, error-correcting codes, and partially ordered sets.

In Chapter 1 we begin with the classification and analysis of basic counting questions.

We also lay the groundwork for the rest of our journey by introducing five essential combi-

natorial principles: the product and sum principles, the bijection principle, the equivalence

principle, and the pigeonhole principle. The latter is existential, not enumerative, in nature.

In Chapter 2 we undertake the study of distribution problems. Most counting questions

are equivalent to questions of counting the ways to distribute “objects” to “recipients.”

Through these distribution problems we meet several major players: binomial coefficients,

Stirling numbers, and integer partition numbers. We also introduce and emphasize com-

binatorial proofs as well as the technique of recursion: breaking up a large problem into

smaller subproblems of the same type.

In Chapter 3 we introduce inclusion-exclusion, mathematical induction, generating

functions, and recurrence relations. These are algebraic techniques in contrast to the combi-

natorial techniques of the previous chapters. The coverage of generating functions includes

techniques for solving recurrence relations.

In Chapter 4 we use the techniques of the previous chapters to give a more in-depth

study of the binomial and multinomial coefficients, Fibonacci numbers, Stirling numbers

of the first and second kinds, and integer partition numbers. Among other lines of investi-

gation, we derive generating functions for these families of numbers, count triangulations
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of the regular n-gon, give combinatorial proofs of Fibonacci number identities using the

idea of tiling, derive a beautiful formula for the Bell numbers, and explore formulas and an

asymptotic estimate for the integer partition numbers.

In Chapter 5 we cover counting problems involving equivalence and symmetry consid-

erations. The main results are the Cauchy-Frobenius-Burnside theorem and Pólya’s enu-

meration theorem. Though Pólya’s theorem arose from an application to the enumeration

of chemical compounds, it has since proved to be a powerful and versatile tool in all sorts

of other applications. We begin this chapter by introducing those aspects of group theory

necessary to understand the theorems, and then give many illustrations of how to apply

them.

In Chapter 6 we give a short survey of some combinatorial problems in graph theory.

These include the enumeration of labeled trees and binary search trees, coloring and the

chromatic polynomial, and introductory Ramsey theory. Though Ramsey theory can be

introduced without the aid of graphs, the edge-coloring interpretation is convenient and

concrete. The first section of this chapter covers basic graph theory concepts for the reader

who is unfamiliar with graphs.

In Chapter 7 we cover two of the most compelling applications of combinatorics: com-

binatorial designs and error-correcting codes. As a bonus, the mathematical questions sur-

rounding these applications are just as compelling if not more so. In the three sections

on designs we cover existence and construction methods, symmetric designs, and triple

systems. In the two sections on error-correcting codes, we construct the family of binary

Hamming codes and derive their error-correcting properties, study the interplay between

codes and designs, and discuss the truly astonishing results concerning the existence of

perfect codes.

In Chapter 8 we conclude our journey by studying relations that are, in some sense,

lurking behind much of combinatorics: partially ordered sets or “posets.” We study some

classical results (Sperner’s theorem and Dilworth’s theorem) and also the concept of poset

dimension. In the final two sections we introduce the theory of Möbius inversion and do so

with a two-fold purpose: to provide a unifying framework for several combinatorial ideas

and to prepare the reader for further study.

There are several important topics not included on the tour. The coverage of graph

theory in Chapter 6, though it contains an introductory section, is focused fairly narrowly

on the topics mentioned earlier. A major branch of combinatorics, namely combinatorial

optimization, is left out entirely. Also, the coverage of designs and codes is driven by the

particular applications. As such, we do not cover projective planes, combinatorial geome-

tries, or Latin squares.

Features of this book

Reading questions. What makes this book a guided tour are the approximately 350 Ques-

tions spread throughout the eight chapters. These allow the reader to be an active partici-

pant in the discussion and are meant to provide a more honest reflection of the process by

which we all learn mathematics. Reading a math book without pencil and paper in hand is

like staying in your hotel and viewing the interesting sites from your window. You’ll get

more out of the tour if you leave the hotel and go explore on foot.
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Combinatorial proofs. To count the cows in a field you could either (1) count their

heads, or (2) count their legs and divide by 4. In a combinatorial proof one asks a count-

ing question and then answers it correctly using two different approaches. This little idea

leads to some beautiful, memorable, and even fun (!) proofs. Wherever possible, we present

combinatorial proofs because they promote understanding and build combinatorial think-

ing skills.

Classification of counting problems. The hard part about counting is determining the

type of objects being counted. Instead of covering lists, lists without repetition (permu-

tations), subsets (combinations), and multisets (combinations with repetition) in separate

sections, in Section 1.1 we learn how to distinguish among these four types.

Conversational style, some big examples. I’ve tried to maintain a conversational and

somewhat informal tone throughout the book. This occasionally means that brevity is sac-

rificed for the sake of clarity. Also, small and/or simple examples of difficult new concepts

sometimes frustrate me. In certain situations I’ve included bigger examples when helpful.

For two examples see Figure 3.1 on page 104 and Figure 7.2 on 279.

Links with continuous mathematics. At appropriate places in the text I’ve highlighted

where calculus, differential equations, linear algebra, etc. are useful in combinatorics.

These help dispel the notion that combinatorics is a “discrete-only” field.

Instructor flexibility. Completion of the reading questions prior to class frees the in-

structor from lecturing on basic material. Class time could then be used to clarify difficul-

ties, lecture on advanced topics, have a problem session, or assign group work. This also

allows class time for reviewing proof techniques, linear algebra, power series, or modular

arithmetic, if necessary. See below for optional prerequisites.

Courses and ways to use this book

This book has two primary uses. The first is as a text for a combinatorics course at the

sophomore/junior/senior level. A one semester or two-quarter course could cover most

of the book. The other use is as a text for an independent study or reading course and

it should work quite well “out of the box” for this purpose. The author has used various

versions of the manuscript for both purposes. The book would also be appropriate for some

introductory graduate courses in applied mathematics or operations research programs. In

that case, the whole book could be covered in a semester and appropriate exercises could be

chosen. In addition, the text would be appropriate for anyone curious about combinatorics

and who wants to learn something about the field at a leisurely pace.

Core topics that every course would most likely include are

� Sections 1.1–1.5: basic counting and existence principles;

� Sections 2.1–2.4: distribution problems and combinatorial proofs;

� Sections 3.1, 3.3–3.5: inclusion-exclusion, generating functions, recurrence relations;

� Sections 5.1–5.4, 5.6: Pólya theory of counting; and

� Sections 7.1–7.5: combinatorial designs and error-correcting codes.

Additional material can be selected from
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� Section 3.2: mathematical induction (if needed for review);

� Section 3.6: formulas for the solution of linear first- and second-order recurrence re-

lations;

� Sections 4.1–4.4: further study of binomial and multinomial coefficients, Fibonacci

numbers, Stirling numbers, and integer partition numbers;

� Section 5.5: a proof of Cauchy-Frobenius-Burnside theorem;

� Sections 6.1–6.4: graph theory topics; and

� Sections 8.1–8.6: partially ordered sets and Möbius inversion.

Prerequisites

The reader embarking on this tour should be familiar with single-variable calculus, sets

and set notation, proof techniques, and basic modular arithmetic. In short, they should have

had a year of calculus as well as a “transition” course. Usually this means sophomores or

juniors and includes majors and minors in the mathematical sciences including statistics,

most majors and minors in computer science, and some engineers.

We now discuss some optional prerequisites.

Optional: mathematical induction. Induction is covered in Section 3.2 although most most

readers meeting the prerequisites will have seen induction already. This section could serve

as a first-time introduction even though its primary purpose is to emphasize how induction

is used in combinatorics.

Optional: linear algebra. Linear algebra is not a necessary prerequisite to most of the book

but a basic understanding of linear systems, matrix algebra, and a couple of vector space

concepts will greatly enhance some of the material. First and foremost is Chapter 7 on

combinatorial designs and error-correcting codes which, in the author’s opinion, represents

some of the most interesting material in the book. Most readers meeting the prerequisites

will have taken linear algebra or will take it concurrently. Linear algebra is also used briefly

in Section 4.3 on Stirling numbers, in two sections of Chapter 6 but only for the adjacency

matrix, and at the end of Chapter 8 on Möbius inversion.

Optional: graph theory. In Chapter 6 we investigate some enumeration and existence ques-

tions related to graphs. No prior knowledge of graph theory is assumed and Section 6.1

serves as a self-contained introduction to the ideas necessary for the rest of the chapter.

This introductory material would be familiar to a student whose transition course included

some graph theory, as many such courses do these days.

Optional: abstract algebra. Chapter 5, on Pólya’s theory of counting, represents a pinnacle

of enumeration. No previous experience with abstract algebra is assumed and we introduce

only the group theory required to understand the results and to solve problems. A reader

who has had a course in abstract algebra would naturally get more from this chapter but

such experience is by no means necessary. Finite fields are briefly mentioned in Section

7.5.
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Before you go

The reading questions, from Question 1 on page 2 to Question 356 on page 363, are an

integral part of this book. Have pencil and paper ready to answer each Question as you

encounter it in the text. Some are straightforward, some ask for the solution to a problem

that is similar to an example, and some ask for a natural generalization of a new idea.

Others ask for an explanation, a recall of a concept from another course, or a justification

of a step in a proof. Still others might ask for an entire proof, but only if the main idea is

well-motivated.

Beginning with Section 1.5, most of the sections conclude with Travel Notes. These

add color to the material of the section via interesting anecdotes, open problems, the cur-

rent state-of-the-art, suggestions for further reading, and background information on the

mathematicians responsible for the discoveries.

Also included at the end of the book are hints and answers to selected end-of-section

Exercises. Consult them only if you get stuck. Answers are given to help you check your

work, but keep two things in mind. One, combinatorial problems usually admit multiple

solution approaches so answers that look different may in fact be the same. Two, an answer

alone is usually not sufficient. The approach you took to analyze the problem is the real

key.

I appreciate corrections, comments, and other feedback on the book. Please email them

to dmazur@wnec.edu. You can visit the book’s website by following the link from my

homepage

mars.wnec.edu/�dmazur
for updates, errata, and other resources.

Enjoy your trip!

xv
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C H A P T E R 1

Principles of Combinatorics

Our journey begins with counting because combinatorics, in part, is the mathematics of

counting. What does it mean to count? It means to determine the exact number of objects

specified by a “How many?” question. What makes counting questions so appealing is that

they arise in all sorts of settings, answering them builds your problem solving skills, and

the answers are often fascinating in their sheer size.

In this chapter we study the principles of counting that are foundational to combina-

torics and that we will use in every other chapter. In the first two sections we practice

classifying and solving basic counting questions. In the next two sections we study two

principles (the bijection principle and the equivalence principle) that are useful for analyz-

ing more difficult problems. In the last section, we introduce existence questions with the

pigeonhole principle.

Counting vs. enumerating

We first make a note on the difference between counting and enumerating. One possible

method of counting is to make a systematic and complete list of the objects being counted.

This is called a complete enumeration or simply an enumeration. For example, if we

wanted to know how many integers between 1 and 100 (inclusive) are divisible by 5 or 6,

we could list them all:

5 6 10 12 15 18 20 24 25 30 35

36 40 42 45 48 50 54 55 60 65 66

70 72 75 78 80 84 85 90 95 96 100:

There are 33.

Complete enumeration is a viable counting technique for small problems but not for

large ones. If we want to count the number of 9 � 9 filled-in Sudoku boards1 then we

should not make a list because there are exactly

6;670;903;752;021;072;936;960

boards, about 6.6 sextillion. Even a computer that could generate 100 billion different

Sudoku boards per second (exceedingly generous to the point of absurdity) would still take

1Visit en.wikipedia.org/wiki/Sudoku if you somehow missed the Sudoku craze.

1
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2 1. Principles of Combinatorics

over 20,000 years to list every single board. Also, if you were to print each board on a 3-

inch square piece of paper, then it would require 15 trillion square miles of paper—enough

to cover the planet Jupiter 625 times.

What we want is a formula that allows us to find the answer without making a complete

list, and we will find many in this chapter and elsewhere. Yet, complete enumeration is

important for at least two reasons. For one, a complete enumeration of a smaller but similar

problem can give insight into how to solve the larger problem. We shall make good use of

this in this chapter. For another, some large, difficult problems exist whose only known

solution involves a complete enumeration (by computer) of some appropriately reduced

subproblem.

1.1 Typical counting questions and the product principle

Our goal in the first two sections of this chapter is to identify some important types of

counting questions and then to get a lot of practice in answering them. Here are four such

questions.

Q1 How many eight-character passwords are possible if each character is either an up-

percase letter A–Z, a lowercase letter a–z, or a digit 0–9?

Q2 Given nine players, in how many different ways can a manager write out a batting

lineup?

Q3 You play a pick-six lottery by specifying six different numbers from 1-40. How many

different lottery tickets are possible?

Q4 How many different orders for a dozen donuts are possible if a store offers 30 donut

varieties?

The first step is to identify the key features of the objects being counted. Once accom-

plished, standard formulas provide the answer.

Question 1 Take a guess at ordering the questions from smallest answer to largest answer.

Throughout this book, we use Œn� to denote the set of the first n positive integers. For

example, Œ4� D f1; 2; 3; 4g and Œ1� D f1g. We use Z to denote the set of integers, N

to denote the set of natural numbers (positive integers), Q to denote the set of rational

numbers, and R to denote the set of real numbers.

Question Q1: Counting lists or words

Solving a similar but smaller version of a problem is an important problem-solving tech-

nique. Here is a smaller version of question Q1: How many three-character passwords are

possible if each of the first two characters is either A, B, or g, and the last character is either

5 or 6?

Some of the passwords we wish to count look like BA5 or AA6 gA6. Let’s think about

choosing the characters one at a time and seeing how the number of choices for each

influences the total number of passwords. The first character must be either A, B, or g, so

any password begins in one of the three ways:

A B g .
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1.1. Typical counting questions and the product principle 3

The next character must either be A, B, or g, so this increases the possibilities by a factor

of 3:

AA BA gA

AB BB gB

Ag Bg gg .

The last character must either be 5 or 6, so this in turn increases the possibilities by a factor

of 2:

AA5 AA6 BA5 BA6 gA5 gA6

AB5 AB6 BB5 BB6 gB5 gB6

Ag5 Ag6 Bg5 Bg6 gg5 gg6 .

From the complete enumeration above we see that there are 18 possible passwords. We

could have obtained this answer by simply multiplying together the number of possibilities

for each of the three characters: 3 � 3 � 2 D 18.

Question 2 How many four-character passwords are possible if each of the first three

characters is either A, B, g, or x, and the last character is an even digit?

There is a nice way to visualize the solution to the smaller Question Q1 using the tree

diagram shown in Figure 1.1. If we write the password in the form l1l2l3, then the branches

to the right of each circle labeled l1, l2, or l3 represent the choices for that character once

the previous characters are specified.

The same counting principle applies to the original question Q1, where we wish to

count case-sensitive, eight-character passwords such as rQ8xt9Pb and V93Vvd99. Each

of the eight characters may be specified in one of 62 ways (26 uppercase letters plus 26

lowercase letters plus 10 digits). Therefore, there are

62 � 62 � 62 � 62 � 62 � 62 � 62 � 62 D 628 D 218;340;105;584;896

possible passwords. A complete enumeration of the approximately 218 trillion passwords

is certainly out of the question!

Question 3 Which is larger, the number of four-character passwords where each character

is a letterA-H, or the number of eight-character passwords where each character is a letter

A-D?

How to count lists or words

The passwords we just counted are examples of lists. A list is an ordered sequence of

objects, and a k-list is a list of length k. In a list, the order in which the objects appear

matters. Also, an object can appear more than once on the list unless forbidden by the

constraints of the problem. Lists are also called words.

For clarity, lists are sometimes written by enclosing the sequence in parentheses and

separating the objects by commas. For example, .V;9;3;V;v;d;9;9/ is an equivalent way

to write the password V93Vvd99. An ordered pair like .�2; 3/ is a 2-list and an ordered

triple like .x; y; z/ is a 3-list.

Just as we use k-list as an abbreviation for a list of length k, we use n-set as an abbrevi-

ation for a set of size n. In Question Q1, each password is an 8-list where each list element

belongs to the 62-set

fA;B;C; : : : ;Z;a;b;c; : : : ;z; 0; 1; 2; : : : ; 9g:
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4 1. Principles of Combinatorics

second characterfirst character third character
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l3

l3

l3

l3

Figure 1.1. Tree diagram for counting three-character passwords l1l2l3.

In this case we simply say that each password is “an 8-list taken from a 62-set.”

Here is a summary of what we have learned about counting lists.

Counting lists:

� Notation: nk equals the number of k-element lists taken from an n-element set.

� Key features: Order matters, repeated elements allowed.

� Typical question: How many ways are there to form a k-letter word where there

are n choices for each letter?

� Formula:

nk D n � n � � � � � n
„ ƒ‚ …

k factors

:

We included a “formula” for nk because it is important to distinguish between the objects

that nk counts and how to calculate nk . The distinction will become clear by the end of

this section.

Question 4 Create a counting question whose answer is 3m.



“master” — 2010/9/20 — 12:30 — page 5 — #23
i

i

i

i

i

i

i

i

1.1. Typical counting questions and the product principle 5

The product principle

The product principle is the general counting method that handles the counting questions

we’ve answered so far. It is quite flexible and perhaps the most widely used basic rule in

combinatorics.

The product principle: In counting k-lists of the form .l1; l2; : : : ; lk/, if

� there are c1 ways to specify element l1 of the list, and each such specification

ultimately leads to a different k-list; and

� for every other list element li , there are ci ways to specify that element no matter

the specification of the previous elements l1; : : : ; li�1, and that each such speci-

fication of li ultimately leads to a different k-list,

then there are c1c2 � � � ck such lists.

In the context of a tree diagram like that of Figure 1.1, the product principle applies when

the number of branches to the right of each circle labeled li is the same, for each fixed i .

Counting binary numbers

A binary number is a sequence of digits, each either 0 or 1. How many n-digit binary

numbers are there?

An n-digit binary number is a number of the form d1d2 � � �dn where each di is 0 or 1.

As such it is an n-list taken from a 2-set, namely f0; 1g, and so there are 2n such numbers.

Question 5 How many n-digit binary numbers do not start with 0?

Counting all possible subsets

How many subsets of an n-set are there?

Besides answering a fundamental counting question, this example’s significance lies in

the way we use lists (in which order matters) to count sets (in which order doesn’t matter).

The idea is to encode each possible subset with an n-digit binary number that indicates

whether each element of the n-set belongs to the subset.

For example, when n D 3 and our 3-set is Œ3�, we associate each subset of Œ3� with a

3-digit binary number as follows:

; �! 000

f1g �! 100

f2g �! 010

f3g �! 001

f1; 2g �! 110

f1; 3g �! 101

f2; 3g �! 011

f1; 2; 3g �! 111:

That is, each subset is associated with the 3-digit binary number d1d2d3 that has di D 1

if i is in the subset and di D 0. This shows that there are as many subsets of Œ3� as there

are 3-digit binary numbers, namely 23. In general, there are as many subsets of an n-set as

there are n-digit binary numbers, so there are 2n subsets of an n-set.

The set of all possible subsets of a set A is called the power set of A and we denote it

with the special notation 2A. The reason for the notation is to make the formula
ˇ
ˇ2A

ˇ
ˇ D 2jAj

memorable. For example,
ˇ
ˇ2Œn�

ˇ
ˇ D 2n.

Question 6 Let X D Œ100� and let Y be the set of odd integers. Find
ˇ
ˇ2X\Y

ˇ
ˇ.



“master” — 2010/9/20 — 12:30 — page 6 — #24
i

i

i

i

i

i

i

i

6 1. Principles of Combinatorics

Question Q2: Counting lists without repetition

Now we move on to Question Q2: Given nine players, in how many different ways can a

manager write out a batting lineup?

Let’s answer the smaller, four-player version first. If the players are A, B, C, D, then a

lineup corresponds to a 4-list in which each of these letters appears exactly once. The list

can begin in four ways:

A B C D .

The second player in the lineup can be anyone but the first player, so this increases the

possibilities by a factor of 3:

AB BA CA DA

AC BC CB DB

AD BD CD DC .

The third player can be anyone but the first two players, so this increases the possibilities

by a factor of 2:

ABC ABD BAC BAD CAB CAD DAB DAC

ACB ACD BCA BCD CBA CBD DBA DBC

ADB ADC BDA BDC CDA CDB DCA DCB .

The final player must be the (only) player not yet on the list, and in order to fit the pattern

we will say that this increases the possibilities by a factor of 1:

ABCD ABDC BACD BADC CABD CADB DABC DACB

ACBD ACDB BCAD BCDA CBAD CBDA DBAC DBCA

ADBC ADCB BDAC BDCA CDAB CDBA DCAB DCBA .

There are 24 possible batting lineups. The complete enumeration suggests that we can

calculate this as 4 � 3 � 2 � 1 D 24. The product 4 � 3 � 2 � 1 is denoted by 4Š and read “four

factorial.”

Question 7 You have a pile of six different books. How many ways are there to arrange

three of them on a shelf? The order in which the books appear from left to right matters.

We can apply this same method to the original Question Q2. There are nine choices for

the first player, then eight choices for the second player, then seven choices for the third

player, and so on. In all, there are 9Š D 9 � 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1D 362;880 different lineups.

In general, nŠ stands for the product of the integers between 1 and n, inclusive. We

define 0Š to be 1.

Counting passwords again

How many passwords in Question Q1 have no repeated characters?

This means that a password like Gh64Fh4Z is no longer allowed, but oqwei9VQ

still is. There are still 62 choices for the first character, but then 61 choices for the second

(anything but the first), 60 choices for the third (anything but the first two), and so on. In

total there are

62 � 61 � 60 � 59 � 58 � 57 � 56 � 55 D 136;325;893;334;400
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1.1. Typical counting questions and the product principle 7

passwords. The notation for the product on the left is .62/8 and it means to take the first

eight terms of 62Š starting with 62. In this case we are counting 8-lists without repetition

from a 62-set. Another way to write it is

.62/8 D
62Š

.62 � 8/Š
D 62Š

54Š
:

In general, .n/k D n.n � 1/ � � � .n � k C 1/ or equivalently .n/k D nŠ
.n�k/Š

. Notice that

.n/n D nŠ.

Question 8 A softball coach has 14 players available but can only bat 10 players in a

lineup. How many lineups are possible?

Counting team assignments

A gymnastics team has seven members. The coach must assign one member to compete

in each of the four event finals (floor exercise, balance beam, vault, uneven parallel bars).

How many different assignments are possible if members are allowed to compete in more

than one event? How many if no member can compete in more than one event?

Label the team members A-G and keep track of an assignment with a 4-list like DCGC

where the first element is the member that competes in the floor exercise (here, D), the

second in the beam (C), the third in the vault (G), and the fourth in the uneven bars (also

C). The answer to the first question is 74 since any such assignment is a 4-list taken from

a 7-set. The answer to the second is .7/4 since any such assignment is a 4-list without

repetition taken from a 7-set. The exact values are

74 D 2401 and .7/4 D 7 � 6 � 5 � 4 D 840:

How to count lists without repetition

A list without repetition is sometimes called a permutation. If such a list has length k

then it is a k-permutation. When we counted the passwords in question Q1 that have no

repeated characters, we counted the 8-permutations taken from a 62-set. An n-permutation

of an n-set is simply called a permutation of the set. This is a “complete permutation” of

the set, like the 4-player batting lineups were permutations of the set fA;B;C;Dg. Here is

a summary.

Counting lists without repetition:

� Notation: .n/k equals the number of k-element lists without repetition taken from

an n-element set.

� Key features: Order matters, repeated elements not allowed.

� Typical question: How many ways are there to form a k-letter word where there

are n choices for each letter and no letter appears more than once?

� Formulas:

.n/k D
nŠ

.n � k/Š
or .n/k D n.n � 1/ � � � .n � k C 1/:

As a special case, nŠ equals the number of n-element lists without repetition taken from an

n-element set. That is, it equals the number of permutations of an n-set.
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8 1. Principles of Combinatorics

Question Q3: Counting subsets of a set

Now we answer Question Q3: You play a pick-six lottery by specifying six different num-

bers from 1-40. How many different lottery tickets are possible?

We first examine the case of a pick-three lottery involving the numbers 1-6. As a note

of clarification, the order in which you list your numbers doesn’t matter in this lottery. For

example, to play the numbers 2-4-5 you fill in those ovals on your ticket:

1 2 3 4 5 6

Thus, a ticket is really just a size-3 subset of the set f1; 2; 3; 4; 5; 6g.
Here is a complete enumeration of all possible tickets. To ensure that we don’t miss

any, we take the systematic approach of first listing all the tickets that have 1 as the lowest

number:

f1; 2; 3g f1; 2; 4g f1; 2; 5g f1; 2; 6g f1; 3; 4g
f1; 3; 5g f1; 3; 6g f1; 4; 5g f1; 4; 6g f1; 5; 6g:

Then list those that have 2 as the lowest number:

f2; 3; 4g f2; 3; 5g f2; 3; 6g f2; 4; 5g f2; 4; 6g f2; 5; 6g:

Then list those that have 3 as the lowest number:

f3; 4; 5g f3; 4; 6g f3; 5; 6g:

Finally list those that have 4 as the lowest number: f4; 5; 6g. There are 20 tickets in all.

The notation
�

n
k

�

, read “n choose k,” stands for the number of k-subsets of an n-set. The

answer to the small lottery question above is
�

6
3

�

and we calculated
�

6
3

�

D 20 by complete

enumeration. The general formula is

 

n

k

!

D .n/k

kŠ
or

 

n

k

!

D nŠ

kŠ .n� k/Š
:

Here is a brief justification. Let’s count the k-permutations of an n-set. We know there are

.n/k of them. An alternate way to count them involves first specifying which k elements

of the n-set are in the permutation (there are
�

n
k

�

ways to do this) and then lining those

elements up in a particular order (there are kŠ ways to do that). By the product principle,

there are
�

n
k

�

� kŠ such permutations. Therefore .n/k D
�

n
k

�

� kŠ, or
�

n
k

�

D .n/k

kŠ
. See Section

1.4 for a somewhat different approach.

Now we can finish Question Q3. The answer is
�
40
6

�

because any ticket corresponds to

a size-6 subset of Œ40�. There are about 3.8 million tickets:

 

40

6

!

D .40/6

6Š
D 40 � 39 � 38 � 37 � 36 � 35

6 � 5 � 4 � 3 � 2 � 1 D 3;838;380:

Question 9 You are dealt a five-card hand from a standard deck of 52 cards. How many

different hands are there? (The order in which you receive the cards doesn’t matter.)
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1.1. Typical counting questions and the product principle 9

Counting binary numbers

How many n-digit binary numbers have exactly k 1s?

Here is a complete enumeration of the 5-digit binary numbers with exactly two 1s:

11000 10100 10010 10001 01100

01010 01001 00110 00101 00011:

To specify such a number, we need only identify the locations of the two 1s because each

remaining digit is then 0. Using a 2-set to keep track of the positions of the 1s gives the

following correspondence:

11000 �! f1; 2g
10100 �! f1; 3g
10010 �! f1; 4g
10001 �! f1; 5g
01100 �! f2; 3g

01010 �! f2; 4g
01001 �! f2; 5g
00110 �! f3; 4g
00101 �! f3; 5g
00011 �! f4; 5g:

Therefore there are as many 5-digit binary numbers with exactly two 1s as there are 2-

subsets of a 5-set, so there are
�

5
2

�

D 10. In general, the number of n-digit binary numbers

with exactly k 1s is
�

n
k

�

.

Question 10 Explain why the number of 10-digit binary numbers with exactly three 1s

equals the number of 10-digit binary numbers with exactly seven 1s.

How to count subsets of a set

The numbers
�

n
k

�

are called binomial coefficients and are so called because of the binomial

theorem (see Theorem 2.2.2 on page 63). The term combination is sometimes used to

indicate a subset or to indicate an unordered collection of distinct objects.

Counting subsets:

� Notation:

 

n

k

!

equals the number of k-element subsets of an n-element set.

� Key features: Order doesn’t matter, repeated elements not allowed.

� Typical questions: How many n-digit binary numbers have exactly k 1s? How

many ways are there to form a k-person committee from a group of n people?

� Formulas:  

n

k

!

D .n/k

kŠ
or

 

n

k

!

D nŠ

kŠ .n � k/Š
:

Question 11 How many ways are there to form a 20-person committee from a group of

435 people?

Question Q4: Counting multisets

Now for Question Q4: How many different orders for a dozen donuts are possible if a store

offers 30 donut varieties?

First we trim the problem to a smaller version involving an order of three from a store

selling four varieties. In ordering donuts all that matters is how many donuts of each variety

we want—the sequence in which we list them doesn’t matter. We also assume that there
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10 1. Principles of Combinatorics

are no differences among donuts of a particular variety. Thus, we have a situation in which

order doesn’t matter (like a set and unlike a list) but repetition is allowed (like a list and

unlike a set).

Let’s say the store has Boston creme (B), chocolate (C ), glazed (G), and maple (M )

available. Here are all possible orders:

fB; B; Bg fB; C; C g fB; C; M g fC; C; M g fG; G; Gg
fB; B; C g fB; G; Gg fB; G; M g fC; G; Gg fG; G; M g
fB; B; Gg fB; M; M g fC; C; C g fC; M; M g fG; M; M g
fB; B; M g fB; C; Gg fC; C; Gg fC; G; M g fM; M; M g:

These are known as multisets which are sets with repetition allowed. We use the same

curly braces f g that indicate a set to indicate a multiset. The presence of a multiset should

be clear from context.2

The notation
��

n
k

��

stands for the number of k-multisets taken from an n-set. The latter

phrase indicates that there are k elements in the multiset and each element belongs to a

certain n-set. The answer to the small donut order question above is
��

4
3

��

and we calculated
��

4
3

��

D 20 by complete enumeration. The general formula is

  

n

k

!!

D
 

k C n� 1

k

!

:

We next explain the formula for the special case n D 4 and k D 3.

Examine the following correspondence between binary numbers and donut orders.

binary number donut order binary number donut order

000111 fB; B; Bg 100011 fC; C; C g
001011 fB; B; C g 100101 fC; C; Gg
001101 fB; B; Gg 100110 fC; C; M g
001110 fB; B; M g 101001 fC; G; Gg
010011 fB; C; C g 101100 fC; M; M g
011001 fB; G; Gg 101010 fC; G; M g
011100 fB; M; M g 110001 fG; G; Gg
010101 fB; C; Gg 110010 fG; G; M g
010110 fB; C; M g 110100 fG; M; M g
011010 fB; G; M g 111000 fM; M; M g

Notice that all of the 3-multisets taken from the 4-set fB; C; G; M g are listed, as are all of

the 6-digit binary numbers with exactly three 0s. In any such binary number, the number

of 0s before the first 1 equals the number of B’s in the order, the number of 0s between the

first and second 1s equals the number of C ’s in the order, and so on. For example, 101100

has no 0s before the first 1 (no B’s in the order), one 0 between the first and second 1 (one

C ), no 0s between the second and third 1 (no G’s), and two 0s after the third 1 (two M ’s).

Therefore, it corresponds to fC; M; M g.
Thus, each binary number has k D 3 zeros and n� 1 D 4� 1 ones. The 0s correspond

to the donuts and the 1s correspond to “dividers” between donuts of different varieties.

2Some authors use different delimiters such as h i or Œ � to denote multisets.
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1.1. Typical counting questions and the product principle 11

(Notice that we use one fewer divider than the number of varieties available.) There are
�

kCn�1
k

�

D
�

3C4�1
3

�

binary numbers having k C n � 1 D 6 digits and exactly k D 3

zeros, and hence that many donut orders. The same idea works in general to show that
��

n
k

��

D
�

kCn�1
k

�

.

Question 12 Given the binary number 10001101010011, invent a multiset to which it

would correspond under the type of correspondence just shown.

The answer to Question Q4 is
��

30
12

��

because any order corresponds to a size-12 multiset

of Œ30�. There are about 7.9 billion orders since

  

30

12

!!

D
 

12C 30� 1

12

!

D
 

41

12

!

D 7;898;654;920:

Question 13 Your friend sends you to the same store for a dozen donuts. He wants three

Boston creme but the rest is up to you. How many different orders are there?

Distributing candy

You have eight red lollipops to distribute among 12 children. In how many ways can you

do this?

Make a record of how we distribute the candy using a multiset. For example, f2; 2; 5; 5;

5; 5; 10; 12gmeans we give two lollipops to child 2, four to child 5, and one each to children

10 and 12. In that way any distribution is an 8-multiset taken from a 12-set. There are

  

12

8

!!

D
 

8C 12 � 1

8

!

D
 

19

8

!

D 75;582

ways to distribute the lollipops.

How to count multisets

The notation
��

n
k

��

is helpful because the double parentheses remind us that repetition is

allowed.

Counting multisets:

� Notation:

  

n

k

!!

equals the number of k-element multisets taken from an n-

element set.

� Key features: Order doesn’t matter, repeated elements allowed.

� Typical questions: In how many ways can we place an order for k donuts if the

store sells n varieties? In how many ways can we distribute k identical pieces of

candy to n children?

� Formula:
  

n

k

!!

D
 

k C n� 1

k

!

:
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12 1. Principles of Combinatorics

Putting it all together

Let’s attack more counting questions using what we know so far. The crucial skill is to be

able to determine whether we need to count lists, permutations, subsets, or multisets.

(a) Four candidates vie for the position of town selectman. If 1180 votes are cast, then

how many different final vote totals could be reported on the news?

H) Call the candidates A, B, C, and D. One way to record the final vote is with

a multiset of size 1180 where each element is either A, B, C, or D. In fact, such a

multiset corresponds exactly to the box containing the 1180 ballots cast where each

ballot has an A, B, C, or D on it. Therefore the number of final vote totals equals the

number of 1180-multisets taken from a 4-set, which is
  

4

1180

!!

D
 

1180C 4 � 1

1180

!

D
 

1183

1180

!

D 275;233;231:

(b) In the era before cell phones, how many 10-digit U. S. phone numbers were there?

Such a number is a 3-digit area code followed by a 3-digit exchange code followed

by a 4-digit extension. Neither an area nor exchange code can begin with 0 or 1, but

the middle digit of the area code must be either 0 or 1.

H) In a phone number, order matters and repetition of digits is allowed. Write a

phone number as a 10-list a1a2a3e1e2e3d1d2d3d4. There are eight choices for a1

(any digit 2 through 9), two choices for a2 (0 or 1), 10 for a3, 8 for e1, and 10 for

each of the six remaining digits. There are

8 � 2 � 10 � 8 � 106 D 1;280;000;000 D 1:28 billion

phone numbers.

Question 14 Springfield, MA is in the 413 area code. How many different exchanges,

at minimum, will ensure that each of the approximately 160,000 citizens of Springfield

can have their own phone number?

(c) Let k and n be integers satisfying 1 6 k 6 n. How many subsets of Œn� contain k as

their largest element?

H) First look at a special case like n D 6 and k D 4. Here are the subsets of Œ6�

containing 4 as their largest element:

f4g f1; 4g f2; 4g f3; 4g
f1; 2; 4g f1; 3; 4g f2; 3; 4g f1; 2; 3; 4g

Ignoring element 4, which must be present in each subset, we see that we have simply

listed all of the subsets of Œ3�, of which there are 23 D 8. The answer to the original

question is 2k�1, because any subset of Œn� containing k as its largest element consists

of k together with any one subset of Œk � 1�.

(d) A lock has the numbers 0-29 arranged in a circle around its dial. A combination for

the lock consists of four numbers, but no two numbers that are adjacent or equal on

the dial can be consecutive in the combination (0 and 29 are adjacent). How many

combinations are there?
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H) Write the combination as a 4-list .d1; d2; d3; d4/. There are 30 choices for d1.

For each such choice there are 27 choices for d2 because it cannot equal d1 or the two

numbers adjacent to it. Similarly there are 27 choices for each of d3 and d4. There are

30 � 273 D 590;490 combinations.

(e) Fifty runners compete in a road race but the newspaper only publishes the names of the

first, second, and third place finishers. How many different lists could the newspaper

publish?

H) If the runners are numbered 1-50, then a 3-list like .34; 37; 2/ indicates that

runner 34 finishes first, 37 finishes second, and 2 finishes third. The order in which

they finish matters, and repetition is not allowed since no runner can finish, say, both

second and third. Thus we count the 3-lists without repetition taken from a 50-set.

There are .50/3 D 50 � 49 � 48 D 117;600 different lists.

Question 15 If instead the paper publishes the order in which all 50 runners finish,

how many are possible?

(f) How many seven-letter palindromes using the letters A-Z are there? A palindrome

reads the same forwards and backwards, like GHHTHHG or RACECAR.

H) A seven-letter palindrome is completely determined by its first four letters. There

are 26 choices for each of the first four letters, so there are 264 D 456;976 palin-

dromes.

Question 16 Answer the same question but for eight-letter palindromes. Then, gen-

eralize to n-letter palindromes.

Notation versus numbers

Understanding what nk , .n/k ,
�

n
k

�

, and
��

n
k

��

count is more important than knowing

how to compute them. For example, writing 628 in addition to the final answer of

218;340;105;584;896 reveals what type of basic objects were counted—8-lists taken from

a 62-set. Thus 628 gives important insight into the solution method. Likewise, writing
�

40
6

�

in addition to 3;838;380 reveals that the problem amounted to counting the 6-subsets of a

40-set. We follow this practice throughout the book.

Summary

In this section we introduced four canonical counting problems. Each involves the arrange-

ment of k objects where each object is chosen from a particular set of size n. Order may

or may not matter in the arrangement of the objects, and repetition of objects may or may

not be allowed in the arrangement. Using the notation introduced in this section, here are

the answers to each of the four problems.

order matters order doesn’t matter

repetition allowed nk

  

n

k

!!

repetition not allowed .n/k

 

n

k

!
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14 1. Principles of Combinatorics

The key to analyzing basic counting problems is to understand which of the four cases can

be applied. It is perfectly acceptable, and even preferable, to leave the answer to a counting

question in terms of the notation shown in the table.

Exercises

1. How many different tickets are possible in each of the following lotteries? And which

lottery offers the best chance of winning?

(a) You pick six numbers from 1-16, a number can be picked more than once, and

order doesn’t matter.

(b) You pick five different numbers from 1-25 and order doesn’t matter.

(c) You pick four different numbers from 1-18 and the order in which you specify

them matters.

2. You flip a coin 20 times and record the ordered sequence of heads and tails.

(a) How many sequences are there in which you get heads on (at least) flip #1, #4,

#7, and #13?

(b) How many sequences have the same number of heads and tails?

3. Count the n-digit numbers of the following types.

(a) ternary: each digit is 0, 1, or 2

(b) octal: each digit is 0, 1, 2, 3, 4, 5, 6, or 7

(c) hexadecimal: each digit is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, or F

4. (see previous exercise) How many 10-digit hexadecimal numbers begin and end with

F? How many 8-digit octal numbers begin and end with an even digit?

5. How many ways are there to pick a collection of 15 coins from bags of pennies,

nickels, dimes, and quarters? (Assume coins of the same denomination are indistin-

guishable.)

6. In the pick-6 lottery involving the numbers 1-40, you win the Match-4 prize if exactly

four of your six numbers appear on the winning ticket. In a given lottery drawing,

how many different tickets would win the Match-4 prize?

7. How many 4-character passwords are possible if each character is taken from an n-

set? What is the smallest n that guarantees at least one billion different passwords?

Answer the same two questions but for 8-character passwords.

8. Consider the phone number 289-3447. How many alphabetic phone numbers can be

made from this number using the letters on the phone buttons? For example, BUY-

EGGS is one possibility and ATX-DIGR is another. Answer the same question if

you’re allowed the option of leaving numbers unchanged, like C8Y-F4IP.

9. How many subsets of Œ20� ...

(a) have smallest element 4 and largest element 15?

(b) contain no even numbers?

(c) have size 10 and don’t contain any number larger than 17?
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1.2. Counting, overcounting, and the sum principle 15

10. A Maryland automobile license plate consists of three letters followed by three num-

bers. How many are possible? Decorum dictates that some three-letter combinations

be outlawed. For each three-letter combination outlawed, how many possible license

plates does this remove from circulation?

11. You throw five identical six-sided dice and write down the values showing, in nonde-

creasing order from left to right. For example, 22245 means you rolled three 2s, one

4, and one 5. How many outcomes are possible? How many in which all the values

are different?

12. How many different regions are in a Venn diagram involving n pairwise intersecting

sets?

13. How many 6-permutations of Œ15� have their digits listed in increasing order?

14. How many arithmetic problems of the following form are possible? You must use

each of the digits 1 through 9, they must appear in numerical order from left to right,

and you can use any combination of the C and � symbols you like, as long as the

resulting expression makes mathematical sense. For example, 1234C 5� 6� 78C 9

and 123456C 789 and 123456789 are three possibilities, but 1��234567C 89 is not.

15. How many ways are there to distribute 16 identical pieces of candy to five children

such that every child receives at least one piece? Generalize to k identical pieces of

candy and n children.

16. How many permutations of Œ9� have no adjacent odd digits? For example, a permuta-

tion like 385164927 is not allowed because 5 and 1 are adjacent.

17. Find the number of 3-lists of the form .x1; x2; x3/, where each xi is a nonnegative

integer and x1 C x2 C x3 D 10.

18. A professor gives an exam on which she asks her students to answer any five of the

eight questions. In how many ways could the students select the questions?

19. A 4 � 7 checkerboard is shown below at the left. How many different rectangles are

hiding in it? Five examples of rectangles you need to count are shown in the two

boards on the right.

20. (from Measure Theory by Paul R. Halmos, Springer-Verlag, 1950) Let S be a set.

Suppose that s is an element of S , T is a subset of S , and F is a set of subsets of S .

How many statements of the form X R Y are possible, where X and Y are each taken

from fS; s; T;Fg and R is taken from f2;�g? Classify each statement as always true,

possibly true, or always false.

1.2 Counting, overcounting, and the sum principle

In this section we continue our study of basic counting problems by discussing several

examples. We first shed light on two common misapplications of the product principle.

We then identify two important techniques for fixing these problems and examine more

examples.
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16 1. Principles of Combinatorics

More with the product principle

Ternary numbers

A ternary number is a sequence of digits, each either 0, 1, or 2. How many 8-digit ternary

numbers have exactly three 1s?

Examples of 8-digit ternary numbers are 11102000 and 02212101 and 00011100. Think

of building such a number in two stages: (1) specify the location of the three 1s, then (2)

specify the remaining digits. There are
�

8
3

�

ways to specify the location of the 1s. The re-

maining five digits are each 0 or 2, so there are 25 ways to specify them. We may apply the

product principle and the answer is
�
8
3

�

� 25 D 1792.

Question 17 How many n-digit ternary numbers have exactly k 1s?

Exam questions

A multiple choice exam has 20 questions with four possible answers for each question.

How many different exam papers would earn a grade of 70%?

We can keep track of a student’s answers using a 20-list taken from fa; b; c; d g where

the latter set represents the possible answers to each question. A grade of 70% means

exactly 14 of 20 questions correct. There are
�

20
14

�

different ways to specify those 14 ques-

tions. Then, each of the remaining six questions must be answered incorrectly. Since there

are three wrong answers for each question, there are 36 ways to answer the remaining six

incorrectly. By the product principle there are
�

20
14

�

� 36 D 28;256;040 ways to earn 70% on

the exam.

Question 18 Divide the number of ways to earn 70% by the total number of ways to com-

plete the exam. What is the likelihood that you’d earn 70% just by guessing?

Palindromes

Of the integers from 1 to 999999, how many are palindromes?

A palindrome reads the same forwards and backwards so each of 4 and 555 and 9889 is

a palindrome that we need to count. This means that a palindrome is completely determined

by its first half. For example, there are 9 � 102 five-digit palindromes because the first digit

can be any digit 1-9, the second any digit 0-9, and the third any digit 0-9. Once those are

chosen the fourth and fifth digits are automatically determined.

Among the integers from 1 to 999999 are one-digit numbers up to six-digit numbers.

The number of palindromes depends on the number of digits:

k 1 2 3 4 5 6

# palindromes with k digits 9 9 9 � 10 9 � 10 9 � 102 9 � 102

To count all the palindromes asked for, we add these answers to obtain

9C 9C .9 � 10/C .9 � 10/C .9 � 102/C .9 � 102/ D 1998:

The sum principle

In answering the last question, we divided the palindromes into cases by number of digits,

counted each case, and then added the answers to get the final total. The breaking-into-

cases idea is indispensable in combinatorics and is called the sum principle.
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1.2. Counting, overcounting, and the sum principle 17

The sum principle: Suppose the objects in a counting question can be divided into

k disjoint and exhaustive cases. If there are nj objects in the j -th case, for j D
1; 2; : : : ; k, then there are n1 C n2 C � � � C nk objects in total.

The word “disjoint” means that there is no overlap among the cases, and the word “exhaus-

tive” means that every object falls into some case. Together, they mean that every object

falls into one and only one case.

Exam questions again

A multiple choice exam has 20 questions with four possible answers for each question.

How many different exam papers would earn a grade of at least 70%?

Again we use a 20-list taken from fa; b; c; d g to keep track of each exam. A grade

of at least 70% means getting between 14 and 20 questions correct, inclusive. We split

the exams into cases according to the number of questions correct and then use the sum

principle. Earlier we found there are
�

20
14

�

� 36 exams that earn exactly 70%. The other cases

are similar and the answer is
 

20

14

!

36 C
 

20

15

!

35 C
 

20

16

!

34 C � � � C
 

20

19

!

31 C
 

20

20

!

30

which can also be written

20
X

kD14

 

20

k

!

320�k . This equals 32;448;508.

Question 19 How many exam papers earn a grade of at least 90%?

Overcounting and other perils

There are two key phrases in the statement of the product principle. For convenience we

repeat it below with the key phrases in boldface.

The product principle: In counting k-lists of the form .l1; l2; : : : ; lk/, if

� there are c1 ways to specify element l1 of the list, and each such specification

ultimately leads to a different k-list; and

� for every other list element li , there are ci ways to specify that element no mat-

ter the specification of the previous elements l1; : : : ; li�1, and that each such

specification of li ultimately leads to a different k-list,

then there are c1c2 � � � ck such lists.

We next illustrate how failure to heed these phrases can lead to incorrect counting.

A misapplication of the product principle

In blackjack, you are dealt a two-card hand. The first is placed face down and the second

face up. How many hands are there in which the face-down card is an ace and the face-up

card is a heart?

Represent a two-card hand as a 2-list .D; U / where D is the face-down card and U is

the face-up card. There are four ways to specify D since there are four aces in the deck.

Then there are 13 ways to specify U since there are 13 hearts in the deck. By the product

principle there are 4 � 13 D 52 hands.

This is an incorrect application of the product principle because the number of ways to

specify U depends on the way D was specified. The problem is the ace of hearts.
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18 1. Principles of Combinatorics

Card chosen for D Number of choices for U

A� 13

A| 13

A~ 12

A} 13

In other words the product principle doesn’t apply because there are not 13 ways to specify

D for every possible choice of U .

The fix

Since the ace of hearts is the problem, let’s treat that case separately. If D is not the ace of

hearts, there are three ways to specify it. For each such way there are 13 ways to specify

U for a total of 3 � 13 D 39 two-card hands. If D is the ace of hearts, there are 12 ways to

specify U for a total of 12 two-card hands. By the sum principle there are 3 � 13C 12D 51

hands.

Another way to fix it is simply to observe that the original, incorrect answer of 4 � 13 is

too large, but only by one because it includes the hand .A~; A~/. So there are 4 � 13�1 D
51 hands.

Question 20 How many hands are there in which the face-down card is an ace and the

face-up card is not a heart?

Another misapplication of the product principle

How many 4-lists taken from Œ9� have at least one pair of adjacent elements equal?

For example, the 4-lists 1114 and 1229 and 5555 qualify, but 9898 does not. Let’s

specify such a list in three steps:

� Step 1: Specify the location of the adjacent equal elements.

� Step 2: Specify the value of those elements.

� Step 3: Specify the two remaining elements.

There are three ways to specify the location of the adjacent equal elements—the first two,

middle two, or last two. Once accomplished, there are nine ways to specify their value.

Then each of the remaining two elements can be any number 1-9, so there are 92 ways to

specify them. By the product principle there are 3 � 9 � 92 D 2187 numbers. Right?

Wrong! We misapplied the product principle and this led to an overcount. The problem

occurred at the first step: each specification of the location of the adjacent equal digits does

not lead to a different 4-digit number in the end. Here is why.

Among the 4-lists being counted by Steps 1-3 are those of the form 44cd which re-

sult from choosing the first two positions in Step 1 and value 4 in Step 2. Now when we

complete the list in Step 3, we end up with the 92 D 81 lists

4411, 4412, 4413, 4414, 4415, : : :, 4497, 4498, 4499. (1.1)

Also among the 4-lists begin counted by Steps 1-3 are those of the form a44d and ab99.

When we complete each such list in Step 3 we end up with

1441, 1442, 1443, 1444, 1445, : : :, 9447, 9448, 9449 (1.2)
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and

1199, 1299, 1399, 1499, 1599, : : :, 9799, 9899, 9999 (1.3)

respectively. This is a problem because lists like 4441 and 4444 appear in both (1.1) and

(1.2). A list like 4499 appears in both (1.1) and (1.3). In other words, it is not the case that

the specifications in Steps 1 and 2 lead to different lists in the end.

The fix

Here is how to fix this. Let

x D # of 4-lists taken from Œ9�

y D # of 4-lists taken from Œ9� with at least one pair of adjacent elements equal

z D # of 4-lists taken from Œ9� with no pair of adjacent elements equal.

We want to find y. By the sum principle x D y C z because any 4-list either has at least

one pair of adjacent elements equal or else has no pair of adjacent elements equal. Notice

that both x and z are easy to determine. We know x D 94. For z, there are nine ways to

specify the first element, then eight ways to specify the second (anything but the first), then

eight ways to specify the third (anything but the second), then eight ways to specify the

fourth (anything but the third). By the product principle there are 9 �83 such lists. Therefore

there are

y D x � z D 94 � 9 � 83 D 1953

4-lists taken from Œ9� with at least one pair of adjacent elements equal.

Question 21 How many 5-lists taken from fA; B; : : : ; Zg have no pair of adjacent letters

equal?

Counting the complement

The technique used to fix the last example is known as counting the complement. It is

essentially just a particular way to apply the sum principle but it is very powerful.

Counting subsets

How many subsets of Œ15� have at least two elements?

“At least two elements” could mean any number of elements from 2 to 15. The com-

plement of “at least two” is “at most one” which only means 0 or 1. There are
�
15
0

�

D 1

subsets with zero elements and
�
15
1

�

D 15 with one element. So there are

215 �
" 

15

0

!

C
 

15

1

!#

D 32;752

subsets with at least two elements.

Notice that it is not necessary to count the complement, for we could just sum the

number of subsets of size k from k D 2 to 15 to get the answer:
 

15

2

!

C
 

15

3

!

C � � � C
 

15

15

!

D
15
X

kD2

 

15

k

!

:

However, counting the complement makes for a quicker calculation.

Question 22 How many n-digit binary numbers have at least one 0 and one 1?



“master” — 2010/9/20 — 12:30 — page 20 — #38
i

i

i

i

i

i

i

i

20 1. Principles of Combinatorics

Counting passwords, again

Passwords often must have a minimum number of characters of a certain type. How many

eight-character passwords are there if each character is either an uppercase letter A-Z, a

lowercase letter a-z, or a digit 0-9, and where at least one letter is used?

The at-least-one-letter requirement eliminates the possibility of an all-number pass-

word. All-number passwords are easy to count so we count the complement. We already

know that there are 628 possible passwords, and of these 108 contain only numbers. There-

fore, 628 � 108 D 218;340;005;584;896 contain at least one letter.

Question 23 Answer the same question, but where at least one letter and at least one

number is used.

Still counting passwords

How many eight-character passwords are there if each character is either an uppercase

letter A-Z, a lowercase letter a-z, or a digit 0-9, and where at least one uppercase and at

least one lowercase letter are used?

The complement of “at least one uppercase and at least one lowercase letter are used”

is “either no uppercase or no lowercase letters are used.” We have to be careful about

counting objects specified by an “or” statement. Define the following sets:

A D fpasswords p W p has 8 charactersg
B D fpasswords p W p has 8 characters and no uppercase lettersg
C D fpasswords p W p has 8 characters and no lowercase lettersg:

The answer to the question is jAj � jB [ C j via counting the complement. We know

jAj D 628. For jB [ C j we use the familiar formula

jB [ C j D jBj C jC j � jB \ C j:
There are jBj D 368 passwords with no uppercase letters, jC j D 368 with no lowercase

letters, and jB \ C j D 108 with neither upper nor lowercase letters (i.e., all numbers).

Therefore there are

jAj � jB [ C j D 628 � .368 C 368 � 108/ D 212;697;985;769;984

passwords in which at least one uppercase and one lowercase letter are used. This require-

ment removes jB [ C j D 5;642;119;814;912 passwords from consideration.

More examples

Best-of-seven series
Two baseball teams, A and B, play each other in a best-of-seven series, so that the first

team to win four games wins the series. The outcome ABAAA means that team A wins

game 1, team B wins game 2, and then team A wins games 3-5 and therefore the series.

The outcome BBBB means that team B wins games 1-4, and BAABABB means that team

B wins in seven games. How many different outcomes are there?

We represent each outcome as a length-4, -5, -6, or -7 list depending on the series’

length. That observation dictates how to break this problem into manageable cases. First,

let’s count the outcomes in which team A wins. There are four cases:

A A A A:
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In each case, the blanks stand for any list of As and Bs containing exactly three As. There

are
�

6
3

�

in the first case,
�

5
3

�

in the second, and so on. Therefore, there are

 

6

3

!

C
 

5

3

!

C
 

4

3

!

C
 

3

3

!

outcomes in which A wins. The number of outcomes in which B wins is exactly the same,

so in all there are

2

" 

6

3

!

C
 

5

3

!

C
 

4

3

!

C
 

3

3

!#

D 70

different outcomes.

Poker hands

From a standard 52-card deck, how many different five-card hands are possible? How likely

is it that you will be dealt three-of-a-kind?

There are as many five-card hands as there are 5-subsets of a 52-set, about 2.6 million:

 

52

5

!

D .52/5

5Š
D 52 � 51 � 50 � 49 � 48

5 � 4 � 3 � 2 � 1 D 2;598;960:

Counting the three-of-a-kind hands requires some care. One approach encodes each hand

as a 5-list .A; B; C; D; E/ where

� A is the denomination of the three-of-a-kind

H) 13 ways to choose A

� B is the 3-set of suits for the three-of-a-kind

H)
�

4
3

�

ways to choose B

� C is a 2-set of denominations for the other two cards

H)
�

12
2

�

ways to choose C

� D is the suit of the smaller denomination in C

H) 4 ways to choose D

� E is the suit of the larger denomination in C

H) 4 ways to choose E .

For example, the hand f4�; 4}; 4~; 3}; K|g corresponds to the 5-list

�

4; f�;};~g; f3; Kg; }; |
�

:

By the product principle there are 13 �
�

4
3

�

�
�

12
2

�

� 42 D 54;912 hands.

Question 24 Explain what is wrong with the following reasoning: There are 52 ways to

select the first card that is a part of the three-of-a-kind. Then there are
�
3
2

�

ways to pick

the other two cards to make up the three-of-a-kind. Finally, there are
�
48
2

�

ways to pick the

other two cards (any cards except those of the denomination of the three-of-a-kind). By the

product principle there are 52 �
�

3
2

�

�
�
48
2

�

ways.
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22 1. Principles of Combinatorics

Since the ratio of three-of-a-kind hands to all possible hands is

54;912

2;598;960
D 0:0211284:::;

we can expect to receive three-of-a-kind on the initial deal about 2% of the time—about

once every 50 hands.

Question 25 How likely is it that you will be dealt a hand containing a full house? (A full

house is three cards of one denomination and two of another denomination.)

See Exercise 18 for the full story.

At least two

How many 5-lists taken from fA; B; C; D; Eg have at least two As?

Since “at least two As” could mean two or three or four or five As, a direct count would

require several cases and also some care to make sure the cases didn’t overlap. The opposite

of “at least two” is “at most one” which requires fewer cases. We count the complement.

The following question outlines a solution via counting the complement.

Question 26 How many 5-lists taken from fA; B; C; D; Eg are possible? How many have

no As? How many have exactly one A? What now is the answer to the original question?

As a check, your answer should be 821.

Summary

Two indispensable principles in combinatorics are the sum principle and the method of

counting the complement. The sum principle is used when we divide a counting problem

into disjoint and exhaustive cases, count each case, and then add the answers. Counting the

complement is useful when the description of the objects to be counted includes phrases

like “at least one” or “at least two” or “nonempty.”

Exercises

1. Jeopardy! The following are answers to counting questions. Your job is to write a

question for each.

(a) nk � .n/k

(b) nn � nŠ

(c) 2n � 2

(d) 35 � 25

2. How many different outcomes are there in a best-of-nine series between two teams A

and B? Generalize to a best-of-n series where n is odd.

3. Given 20 people, how many ways are there to form a committee containing at least

three people?

4. A group consists of 12 men and eight women. How many ways are there to...

(a) form a committee of size 5?

(b) form a committee of size 5 containing two men and three women?

(c) form a committee of size 6 containing at least three women?
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(d) form a committee of size 10 containing at least four women?

(e) form an all-male committee of any size?

5. How many eight-character passwords are there if each character is either an uppercase

letter A-Z, a lowercase letter a-z, or a digit 0-9, and where at least one character of

each of the three types is used?

6. Nate, Ben, Suzy, and Gracie play bridge. In how many ways can the 52-card deck be

dealt so that each player receives 13 cards?

7. How many k-multisets taken from Œn� are not also (ordinary) subsets of Œn�?

8. Let k and n be positive integers satisfying k < n. How many subsets of Œn� are not

also subsets of Œk�?

9. How many nonempty subsets of Œ10� have the product of their elements even?

10. How many permutations of Œn� are possible in which no even numbers and no odd

numbers are adjacent?

11. How many five-letter words (uppercase letters only) do not both begin and end with a

vowel?

12. Consider the 3-lists taken from Œ3�. How many are there in which each element of Œ3�

appears at least once? Answer the same question, but for 4-lists and 5-lists taken from

Œ3�.

13. A Shidoku board is a 4 � 4 grid of numbers where each of the numbers 1–4 appears

exactly once in each row, column, and in each of the four 2 � 2 sub-grids. Here are

two different Shidoku boards:

4 3 1 2

2 1 3 4

3 2 4 1

1 4 2 3

1 2 4 3

3 4 1 2

2 1 3 4

4 3 2 1

How many different Shidoku boards are there?

14. In how many different ways can you arrange the numbers 1–9 in a 3 � 9 grid such

that each number appears exactly once in each row; and each number appears exactly

once in each of the left, middle, and right 3� 3 sub-grids? Here is the grid along with

one possible arrangement:

2 7 1 3 5 9 6 4 8

4 3 8 6 7 2 1 5 9

5 6 9 1 4 8 2 3 7

15. You write down all of the integers from 1 to 1,000,000. How many times did you write

the digit 4?

16. How many 4-permutations of Œ10� have maximum element equal to 6? How many

have maximum element at most 6?

17. Find the number of 4-lists of the form .x1; x2; x3; x4/, where each xi is a nonnegative

integer and x1 C x2 C x3 C 4x4 D 15.
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24 1. Principles of Combinatorics

18. This is an excellent exercise for practicing counting. Find the number of five-card

hands, dealt from a standard 52-card deck, that contain:

(a) a royal flush (A-K-Q-J-10 all in one suit);

(b) a straight flush (five cards of consecutive denominations all in one suit, but not a

royal flush);

(c) four-of-a-kind (four cards of one denomination and one card of a different de-

nomination);

(d) a full house (three cards of one denomination and two of a different denomina-

tion);

(e) a flush (five cards all in one suit, but not a straight flush or royal flush);

(f) a straight (five cards of consecutive denominations, but not all in one suit);

(g) three-of-a-kind (three cards of one denomination, a fourth card of a different

denomination, and a fifth card of a third different denomination);

(h) two pairs (two cards of one denomination, two cards of a different denomination,

and a fifth card of a third different denomination);

(i) one pair (two cards of one denomination, a third card of a different denomina-

tion, a fourth card of a third different denomination, and a fifth card of a fourth

different denomination); and

(j) none of the above.

Compute the likelihood, or probability, of receiving each type of hand on the initial

deal. (As a check, they are listed in increasing order of likelihood.)

19. How many zeros does nŠ end with? Prove your answer.

1.3 Functions and the bijection principle

It is now time to delve into some of the mathematical underpinnings of combinatorics. The

concept of relation plays a central role. Functions, equivalence relations, graphs, and partial

orders are the main players that we will encounter in this book, and each is a different kind

of relation. We begin with functions because they are the most familiar and they are closely

related to the counting methods of Sections 1.1 and 1.2.

Counting via a bijection

In Section 1.1, we counted the possible subsets of the set Œ3� via the correspondence shown

at the left of Figure 1.2. We counted the 5-digit binary numbers with exactly two 1s via the

correspondence shown at the right.

In both cases the objects to count appear to the left of the arrows, and objects that we

know how to count (because they are instances of standard counting problems) appear to

the right. The correspondence on the left shows that there are exactly as many subsets of Œ3�

as there are 3-digit binary numbers, namely 23. The correspondence on the right shows that

there are exactly as many 5-digit binary numbers with exactly two 1s as there are 2-subsets

of Œ5�, namely
�
5
2

�

.

Each of these correspondences is a kind of function called a bijection. They are useful

in combinatorics because, as the two examples suggest, we can count the elements of a set

A that is difficult to count by
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1.3. Functions and the bijection principle 25

; �! 000

f1g �! 100

f2g �! 010

f3g �! 001

f1; 2g �! 110

f1; 3g �! 101

f2; 3g �! 011

f1; 2; 3g �! 111

11000 �! f1; 2g
10100 �! f1; 3g
10010 �! f1; 4g
10001 �! f1; 5g
01100 �! f2; 3g
01010 �! f2; 4g
01001 �! f2; 5g
00110 �! f3; 4g
00101 �! f3; 5g
00011 �! f4; 5g

Figure 1.2. Two correspondences for counting.

� finding another set B which is easier to count, and

� constructing a bijection from A to B .

This allows us to conclude that A and B have the same size. Though the two correspon-

dences shown involve relatively intuitive or straightforward bijections, tougher problems

call for more cleverness. As such, we need to understand the theory of functions pertinent

to counting.

Relations and functions

In order to define a relation we first define the Cartesian product. For sets A and B , the

Cartesian product of A and B is that set A � B given by

A � B D
˚

.a; b/ W a 2 A and b 2 B
	

:

For example, if A D f1; 2g and B D f˛; ˇ; g, then A � B contains six ordered pairs:

A � B D
˚

.1; ˛/; .1; ˇ/; .1; /; .2; ˛/; .2; ˇ/; .2; /
	

:

Question 27 What is B �A? In general, if X and Y are finite sets, then are the following

statements true or false? (1) X � Y D Y �X; (2) jX � Y j D jY �X j.

Next we define relation.

Definition 1.3.1 (relation) Let A and B be sets. A relation from A to B is a subset of

A � B . A relation on A is a subset of A �A.

A mere relation needn’t have very much structure. By imposing the following structure

we obtain what we wish to study in this section—a function.

Definition 1.3.2 (function) Let A and B be sets. A function from A to B is a relation

f from A to B that satisfies the following property: for each a 2 A, there is exactly one

b 2 B such that .a; b/ 2 f . We write f W A �! B to indicate that f is a function from A

to B , and we write f .a/ D b to mean .a; b/ 2 f .

You might consider a function to be an input-output rule like f .x/ D x2, not a set of

ordered pairs. But this input-output rule means that each input x is associated with the
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output x2. When you graph this function, you plot ordered pairs of the form .x; x2/ such

as .0; 0/, .0:5; 0:25/, .1; 1/, and .1:5; 2:25/. So from this point of view a function really is

a set of ordered pairs as described in the definition.

For example, if A D f1; 2; 3; 4; 5g and Z is the set of integers, then the function f W
A �! Z defined by the rule f .x/ D x2 is the set of ordered pairs

f D
˚

.1; 1/; .2; 4/; .3; 9/; .4; 16/; .5; 25/
	

: (1.4)

For example, .3; 9/ 2 f means f .3/ D 9.

Question 28 Define g W 2Œ2� �! Z by the rule g.S/ D jS j, where S is any subset of Œ2�.

Write g as a set of ordered pairs.

Domain, codomain, and range

If we have a function f W A �! B , then the set A is the domain of f and the set B is the

codomain of f . We write dom.f / D A and co.f / D B to indicate this. The range of f

is that subset of B defined by

rng.f / WD fb 2 B W f .a/ D b for at least one a 2 Ag:

The range could equal the codomain but not necessarily. For example, if we define f W
R �! R by f .x/ D x2, then this has dom.f / D co.f / D R while rng.f / is the set

of nonnegative real numbers. The definition of function allows us to be careless with the

codomain.

Examples

(a) If f is the function at the left of Figure 1.2, then the domain is the power set of Œ3�

and the codomain is the set of 3-digit binary numbers. For any set S in the domain,

the rule is f .S/ D d1d2d3 where di is 1 or 0 according to whether i 2 S or i 62 S ,

respectively.

(b) If g is the function at the right of Figure 1.2, then the domain is the set of 5-digit

binary numbers containing exactly two 1s and the range is the set of 2-subsets of Œ5�.

For any binary number b in the domain, the rule is g.b/ D fi; j g where i and j are

the positions in which b has a 1.

(c) Let A be the set of 2-subsets of Œ5� and let B be the set of 3-subsets of Œ5�. Then the

function h W A �! B defined by the rule h.S/ D Sc is the function that associates

each set in A with its complement, which is in B . For example, h
�

f3; 4g
�

D f1; 2; 5g.
See Figure 1.3 for a picture of the function in part (c).

Question 29 Let X D 2Œ10� and let Y be the set of nonnegative integers. Define f W X �!
Y by f .S/ D jS j. Find f

�

f3; 5; 6; 7; 8g
�

and f .;/. Is rng.f / D Y ?

One-to-one, onto, and bijective functions

We next identify the properties of functions that are useful for counting. For a function

f W A �! B , it is one-to-one provided that it “uses” every possible output in B at most

once. It is onto provided that every possible output in B is “used” at least once. A bijection

is a one-to-one and onto function.
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1.3. Functions and the bijection principle 27

{1, 3}

{1, 4}

{1, 5}

{2, 3}

{2, 4}

{2, 5}

{3, 4}

{1, 2}

{3, 5}

{4, 5}

{2, 4, 5}

{2, 3, 5}

{2, 3, 4}

{1, 4, 5}

{1, 3, 5}

{1, 3, 4}

{1, 2, 5}

{3, 4, 5}

{1, 2, 4}

{1, 2, 3}

Figure 1.3. Function from the 2-subsets of Œ5� to the 3-subsets of Œ5�.

Definition 1.3.3 (one-to-one, onto, bijection) For a function f W A �! B , we say f is a

bijection or one-to-one correspondence provided f has both of the following properties.

� One-to-one: For each a1; a2 2 A, if f .a1/ D f .a2/, then a1 D a2.

� Onto: For each b 2 B , there exists some a 2 A such that f .a/ D b.

A one-to-one function is also called an injective function or an injection. An onto func-

tion is also called a surjective function or a surjection. Another way to define one-to-one

function is with the contrapositive of the statement given in the above definition.

� One-to-one, alternate version: For each a1; a2 2 A, if a1 6D a2, then f .a1/ 6D f .a2/.

This may seem more natural—it says that different inputs produce different outputs—but

the original one is sometimes easier to use in proofs.

We have already seen three examples of bijections in Figures 1.2 and 1.3.

Question 30 Is the function f of Question 29 a bijection?

The bijection principle

Figure 1.4 shows a basic but important visual representation of four kinds of functions. It

appears that when a function is a bijection the domain and codomain are equal in size. In

fact, this is the mathematical definition of what it means for two sets to have the same size.

The bijection principle: Two finite sets A and B have the same size if and only if there

exists a bijection from one set to the other.

Bijective proofs

We now have the theory that allows us to count using the method explained at the beginning

of this section. To illustrate, we’ll use the bijection principle to prove the following two

statements. A proof using the bijection principle is called a bijective proof.

� The number of k-subsets of Œn� equals the number of .n � k/-subsets of Œn�.

� The number of subsets of Œn� of odd size equals the number of subsets of Œn� of even

size.
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function, neither
one-to-one nor onto

1

2

3

1

2

3

4

1

2

3

one-to-one function,
not onto

1

2

3

4

1

2

3

4

bijection

1

2

3

4

onto function,
not one-to-one

1

2

3

1

2

3

4

5

Figure 1.4. Four kinds of functions.

The first statement says
�

n
k

�

D
�

n
n�k

�

. This is intuitively clear: to specify a k-subset of

Œn� we can choose the k elements to include or equivalently choose the n � k elements to

exclude. We’ll prove it using the bijection principle for the purposes of illustration. The

second statement is perhaps less obvious.

Bijective proof #1

Figure 1.3 illustrates how the set complement function gives a bijection between the 2-

subsets of Œ5� and the 3-subsets of Œ5�. We now generalize this.

Let A be the set of k-subsets of Œn� and let B be the set of .n�k/-subsets of Œn�. Define

h W A �! B by the rule h.S/ D Sc . Note that S has size k so Sc has size n � k, which

means that this function is well defined. We prove that h is a bijection.

One-to-one: Assume S1 and S2 are two k-subsets of Œn� satisfying S1 6D S2. It follows

that there is some i satisfying i 2 S1 and i 62 S2. Since i 2 S1, we know that i 62 h.S1/

because h is the set complement function. Also, since i 62 S2, we know that i 2 h.S2/.

But this means h.S1/ 6D h.S2/ since the element i is in h.S2/ but not h.S1/. Therefore h

is one-to-one.

Onto: Let T be an .n� k/-subset of Œn�. Our job is to find some k-subset S of Œn� such

that h.S/ D T . Choosing S D T c works: T has size n� k so T c has size k, meaning that

T c 2 A. Moreover,

h.S/ D h.T c/ D .T c/c D T:

Therefore, h is onto. This completes the proof that h is a bijection. Therefore
�

n
k

�

D
�

n
n�k

�

,

because we know
�

n
k

�

is the number of k-subsets of Œn� and
�

n
n�k

�

is the number of .n�k/-

subsets of Œn�.
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Bijective proof #2

Notice that there are as many even-sized subsets of Œ3� as there are odd-sized:

even size ;, f1; 2g, f1; 3g, f2; 3g
odd size f1g, f2g, f3g, f1; 2; 3g

The same is true for the even- and odd-sized subsets of Œ4�:

even size ;, f1; 2g, f1; 3g, f1; 4g, f2; 3g, f2; 4g, f3; 4g, f1; 2; 3; 4g
odd size f1g, f2g, f3g, f4g, f1; 2; 3g, f1; 2; 4g, f1; 3; 4g, f2; 3; 4g

This looks like it should be true in general. The question is whether there is a natural

bijection between the sets. Here is one: if a set contains element 1, remove it; and if a set

doesn’t contain element 1, add it.

Question 31 Draw a picture of the correspondence for the subsets of Œ3�, as described in

the last sentence.

In general, let E and O be the set of even-sized and odd-sized subsets of Œn�, respec-

tively. Define f W E �! O by the rule

f .A/ D
(

A� f1g if 1 2 A

A[ f1g if 1 62 A.

First we observe that f is indeed well-defined because if A is any even-sized subset, then

the size of f .A/ is either jAj � 1 or jAj C 1 and both of these numbers are odd.

One-to-one: Let A1 and A2 be even-sized subsets of Œn�, and assume that f .A1/ D
f .A2/. Our goal is to show that A1 D A2. We use the standard technique of showing that

A1 � A2 and A2 � A1.

To show A1 � A2, let i 2 A1. We need to show i 2 A2, and we do so by considering

two cases: i D 1 and i > 1. First, if i D 1 then

1 2 A1 H) 1 62 f .A1/ since f removes element 1

H) 1 62 f .A2/ since f .A1/ D f .A2/ by assumption

H) 1 2 A2 since f removed element 1.

On the other hand, if i > 1 then

i 2 A1 H) i 2 f .A1/ since f does not remove element i

H) i 2 f .A2/ since f .A1/ D f .A2/ by assumption

H) i 2 A2 since f did not remove element i .

In either case i 2 A2 and therefore A1 � A2.

To show A2 � A1, the details are similar; see the Question below. Therefore A1 D A2

and so f is one-to-one.

Question 32 Provide the details that prove A2 � A1.

Onto: Let B be an odd-sized subset of Œn�. We must construct an even-sized subset A

of Œn� such that f .A/ D B . The idea is simple: if 1 2 B then define A WD B � f1g, and if

1 62 B then define A WD B [f1g. Notice that in either case A is an even-sized subset. Now,

if 1 2 B then

f .A/ D f
�

B � f1g
�

D
�

B � f1g
�

[ f1g D B;
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and if 1 62 B then

f .A/ D f
�

B [ f1g
�

D
�

B [ f1g
�

� f1g D B:

In either case, f .A/ D B . Therefore f is onto. This completes the proof that f is a

bijection. Therefore the number of even-sized subsets of an n-set equals the number of

odd-sized subsets of an n-set.

Function composition

In the remainder of this section we mention two more ideas involving functions that will

be useful in our later work. The first is function composition. For example, recall that the

function h.x/ D .x3 � 1/5 is the composition of f .x/ D x3 � 1 and g.x/ D x5 because

.g ı f /.x/ D g
�

f .x/
�

D g
�

x3 � 1
�

D .x3 � 1/5.

Definition 1.3.4 (composition) For functions f W A �! B and g W B �! C , the com-

position of f with g is that function g ı f W A �! C defined by .g ı f /.a/ D g
�

f .a/
�

.

For example, let f W Œ4� �! Œ3� and g W Œ3� �! Œ7� be defined by

f D
˚

.1; 2/; .2; 1/; .3; 1/; .4; 2/
	

g D
˚

.1; 2/; .2; 6/; .3; 6/
	

:

This means that g ı f D
˚

.1; 6/; .2; 2/; .3; 2/; .4; 6/
	

because g
�

f .1/
�

D g.2/ D 6 and

g
�

f .2/
�

D g.1/ D 2 and so forth.

Question 33 Is the composition f ı g defined? Explain.

Inherited properties

The one-to-one and onto properties of functions are preserved under composition.

Theorem 1.3.5 Let f W A �! B and g W B �! C . If f and g are both one-to-one, then

so is g ı f . If f and g are both onto, then so is g ı f . If f and g are both bijective, then

so is g ı f .

Proof: Assume f W A �! B and g W B �! C .

Assume that f and g are both one-to-one. To prove that gıf is one-to-one, let a1; a2 2
A and assume that .g ıf /.a1/ D .g ıf /.a2/, i.e., g

�

f .a1/
�

D g
�

f .a2/
�

. Since g is one-

to-one, this implies f .a1/ D f .a2/. Then since f is one-to-one, this implies a1 D a2.

Therefore g ı f is one-to-one.

The proof that g ı f is onto is left to you in the Question after the proof. It then

immediately follows that g ı f is bijective when f and g are bijective.

Question 34 Prove that if f and g are onto, then g ı f is onto.

Function composition is associative

That function composition is an associative operation is an important property. In fact, the

counting method that we study in Chapter 5 relies on this principle.

Theorem 1.3.6 Let f W A �! B , g W B �! C , and h W C �! D. Then h ı .g ı f / D
.h ı g/ ı f .
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Proof: Let f W A �! B , g W B �! C , and h W C �! D. First examine the function

h ı .g ı f /. Definition 1.3.4 shows that g ı f W A �! C , and then also that h ı .g ı f / W
A �! D. Also by that definition, h ı g W B �! D and so .h ı g/ ı f W A �! D. This

means that the two functions in question have equal domains and codomains.

Now let a 2 A. On one hand, apply Definition 1.3.4 twice to show
�

h ı .g ı f /
�

.a/ D h
�

.g ı f /
�

.a/ D h
�

g
�

f .a/
��

:

On the other hand,
�

.h ı g/ ı f /
�

.a/ D .h ı g/
�

f .a/
�

D h
�

g
�

f .a/
��

:

Since
�

h ı .g ı f /
�

.a/ D
�

.h ı g/ ı f /
�

.a/ for each a 2 A, and since these two functions

have the same domain and codomain, they must be equal.

Inverse relation, inverse function

The last concept we cover in this section is the inverse of a relation. To obtain the inverse

of a relation we simply switch the order of the elements in each 2-list. If R is a relation

from A to B , then the inverse of R is that relation R�1 from B to A given by

R�1 D
˚

.b; a/ W .a; b/ 2 R
	

:

Put another way, .a; b/ 2 R if and only if .b; a/ 2 R�1. Since every function is a relation,

then the inverse of a function does not need a separate definition. Yet we must make one

crucial point: the inverse of a function need not be a function.

Question 35 Is the inverse relation of the function f shown in (1.4) on page 26 a function?

If so, give the domain and codomain of f �1 as well as its input-output rule.

The best we can say is that if f W A �! B is a function from A to B , then f �1 is a

relation from B to A. We now give a necessary and sufficient condition for f �1 to be a

function.

Theorem 1.3.7 If f is a function, then the inverse relation f �1 is a function if and only if

f is one-to-one. In that case, dom.f �1/ D rng.f / and rng.f �1/ D dom.f /.

See Exercise 7 for the proof.

This now gives us two slightly different methods for demonstrating that a function

f W A �! B is bijective.

� Prove that f is one-to-one and onto.

� Prove that the inverse relation f �1 is a function with domain equal to B .

Mathematical convenience dictates which one to use. You can tell when the second method

is being used because it is often accompanied by the term “reversible.” Exercise 11 asks

you to prove it without using Theorem 1.3.7.

Summary

If A is a set of objects that is difficult to count, and you suspect that there are as many ob-

jects in A as there are in a different, easy-to-count set B , then the bijection principle might

be of use. A bijection is a one-to-one and onto function, and the bijection principle says

that two finite sets have the same size exactly when there is a bijection between them. Be-

sides studying these ideas, we also examined function composition and the inverse relation

of a function.
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32 1. Principles of Combinatorics

Exercises

1. The less-than relation on Œ4� is the set

R D
˚

.1; 2/; .1; 3/; .1; 4/; .2; 3/; .2; 4/; .3; 4/
	

:

In other words, .a; b/ 2 R if and only if a < b. It contains six ordered pairs. How

many ordered pairs are in the less-than relation on Œn�? How many are in the less-

than-or-equal-to relation on Œn�?

2. Define a relation R on Œ24� � Œ24� where .a; b/ 2 R exactly when a is a factor of b.

Write R as a set of ordered pairs.

3. How many different functions from Œ7� to Œ10� are there?

4. Given a set S , a function f W S � S �! S is called a binary operation on S . If S is

a finite set, then how many different binary operations on S are possible?

5. Give a bijective proof: The number of subsets of Œn� equals the number of n-digit

binary numbers. (This proves one fact suggested by Figure 1.2 on page 25.)

6. Give a bijective proof: The number of n-digit binary numbers with exactly k 1s equals

the number of k-subsets of Œn�. (This proves the other fact suggested by Figure 1.2 on

page 25.)

7. Prove Theorem 1.3.7.

8. Prove: If f W A �! B is a bijection, then f �1 is a bijection B �! A.

9. In Bijective Proof #1, prove that the set complement function is one-to-one using the

property as stated in Definition 1.3.3 instead. Compare with the proof given in the

text.

10. Suppose A and B are finite sets with jAj D jBj and that f W A �! B is a function.

Prove: f is one-to-one if and only if f is onto.

11. Suppose that A and B are finite sets and that f W A �! B is a function. Prove without

using Theorem 1.3.7: If the inverse relation f �1 is a function with domain B , then f

is a bijection. Also, do you need A and B to be finite sets?

12. Let E and O be the sets of even- and odd-sized subsets of Œn�, respectively. If n is odd

then the set complement function maps sets in E to sets in O. Is this a bijection? Prove

or disprove.

13. This exercise outlines a bijective proof of the formula
��

n
k

��

D
�

kCn�1
k

�

from Section

1.1. Let A be the set of k-multisets taken from Œn� and let B be the set of k-subsets of

Œk C n � 1�. Assume that the k-multiset fa1; a2; : : : ; akg is written in nondecreasing

order: a1 6 a2 6 � � � 6 ak . Define f W A �! B by

f
�

fa1; a2; : : : ; akg
�

D fa1; a2 C 1; a3 C 2; : : : ; ak C k � 1g:

This function, and proof, is originally due to Euler.

(a) Prove that the outputs of f are indeed k-subsets of Œk C n � 1�. This requires

proof since it is not immediately clear from the definition of f .

(b) Prove that f is a bijection.
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1.4 Relations and the equivalence principle

The equivalence principle applies to combinatorial problems that exhibit certain symme-

tries. Two canonical problems involve counting the possible ways to seat a group of people

around a circular table and counting the possible ways to pair off a group of people, say

for the first round of a round-robin tournament. Both problems involve subtleties that we

have not yet encountered.

Our purposes in this section are first to lay the groundwork for the equivalence prin-

ciple and second to illustrate how to apply it. In Chapter 5, we study Pólya’s enumeration

theorem which is a very powerful generalization of the equivalence principle.

Equivalence relation

The equivalence principle rests on the idea of equivalence relation which is one of the most

ubiquitous in all of mathematics. Recall that a relation on a set A is a subset of A � A.

Definition 1.4.1 (equivalence relation) A relation E on a set A is an equivalence relation

on A provided that E has the following three properties.

� Reflexive: For each a 2 A, .a; a/ 2 E .

� Symmetric: For each a; b 2 A, if .a; b/ 2 E then .b; a/ 2 E .

� Transitive: For each a; b; c 2 A, if .a; b/ 2 E and .b; c/ 2 E , then .a; c/ 2 E .

The idea of equivalence relation abstracts three properties that ordinaryD (equals) enjoys

on any set of numbers. It is reflexive (because a D a for any number a), symmetric (order

doesn’t matter because a D b and b D a mean the same thing), and transitive (if a D b

and b D c then a D c).

It’s customary to write aEb to mean .a; b/ 2 E . With this notation the symmetric

property, for example, becomes: for each a; b 2 A, if aEb then bEa. We use the two

notations interchangeably.

Examples

(a) One important equivalence relation is congruence modulo n on the set Z of integers.

That is, fix a positive integer n and define, for any integers a and b, the relation

a � b .mod n/ if and only if n
ˇ
ˇ .a � b/: (1.5)

So for example 5 � 54 .mod 7/ because 5 � 54 D �49 and 7
ˇ
ˇ.�49/. On the other

hand, 5 6� �3 .mod 7/ because 5� .�3/ D 8 and 7 is not a factor of 8. (See Exercise

4 for the proof that this is an equivalence relation.)

Question 36 Is 45 � 106 .mod 2/? Is 47 � 97 .mod 2/? Determine exactly when

a � b .mod 2/ is true.

(b) Define a relation � on the power set of Œ3� by S � T if and only if jS j D jT j. In

other words, two sets are related when they have the same size. Then for example

f3g � f1g because both sets have size 1, and f1; 2g � f2; 3g because both sets have

size 2. However, ; 6� f1g because they do not have the same size. This relation � is

reflexive because jS j D jS j is true of any set S . It is symmetric because if jS j D jT j
then jT j D jS j. It is transitive because if jS j D jT j and jT j D jU j, then jS j D jU j.
It is an equivalence relation.
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34 1. Principles of Combinatorics

(c) For any set A, the identity relation on A is the relation

IA WD f.a; a/ W a 2 Ag:

It is an equivalence relation.

Equivalence class

Given an equivalence relation on a set A and any a 2 A, the equivalence class containing

a is the set of all elements of A that are related to a.

Definition 1.4.2 (equivalence class) Let E be an equivalence relation on a set A. For any

a 2 A, the equivalence class containing a is that set

E.a/ WD fx 2 A W .a; x/ 2 Eg:

Examples

(a) If E is the congruence modulo 3 relation on the integers, then the equivalence class

containing the integer 0 is the set of all integers whose remainder is 0 when divided

by 3, i.e., the multiples of 3:

E.0/ D f: : : ;�9;�6;�3; 0; 3; 6; 9; : : :g:

The equivalence class containing 1 is the set of all integers whose remainder is 1 when

divided by 3:

E.1/ D f: : : ;�8;�5;�2; 1; 4; 7; 10; : : :g:

Question 37 Find E.2/ and E.40/.

(b) If � is the has-the-same-size relation on the power set of Œ3�, then the equivalence

class containing the set f1g is
˚

f1g; f2g; f3g
	

.

Question 38 For this same relation, find the equivalence class containing ; and the

equivalence class containing f2; 3g.

Related elements are in the same equivalence class

This next result says that if two elements are related by an equivalence relation, then their

equivalence classes are equal.

Theorem 1.4.3 If E is an equivalence relation on a set A and .a; b/ 2 E , then E.a/ D
E.b/.

Proof: Let E be an equivalence relation on a set A, and let .a; b/ 2 E . To prove E.a/ D
E.b/, we show that each is a subset of the other.

First, let x 2 E.a/. This means .a; x/ 2 E . Since .b; a/ 2 E because E is symmetric,

this implies .b; x/ 2 E because E is transitive. But then x 2 E.b/. Therefore E.a/ � E.b/.

The proof that E.b/ � E.a/ is similar and left to the Question below. This completes

the proof that E.a/ D E.b/.

Question 39 Complete the proof by proving that E.b/ � E.a/.
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Partition

Definition 1.4.4 (partition) For any set S , a partition of S is a set of nonempty, disjoint

subsets of S whose union is S .

For example, here are three possible partitions of Œ6�:

P1 D
˚

f1; 6g; f2g; f3; 4; 5g
	

P2 D
˚

f1; 2; 3; 4; 5; 6g
	

P3 D
˚

f1g; f2g; f3g; f4; 5g; f6g
	

:

The elements of a partition are called the blocks of the partition. Thus P1 has three blocks,

P2 has one block, and P3 has five blocks. (We will learn how to count partitions in Sections

2.3 and 3.1.)

Equivalence relations and partitions

The concepts of equivalence relation and partition are intimately related: there is a natural

bijection between the equivalence relations on a given set and the partitions of that same

set. We now prove this. The first step is to understand how an equivalence relation induces

a partition.

Theorem 1.4.5 If E is an equivalence relation on a set A, then the set

P WD
˚

E.a/ W a 2 A
	

(1.6)

of equivalence classes of E is a partition of A.

Proof: Let E be an equivalence relation on a set A. Following Definition 1.4.4, we first

verify that each block of P is nonempty. Let E.a/ be a block of P . Since E is reflexive, we

know .a; a/ 2 E . This means a 2 E.a/, so E.a/ is nonempty. Also, since a 2 E.a/ for all

a 2 A, we see that the union of the blocks of P equals A.

The last thing to prove is that the blocks of P are disjoint. If P has only one block

(namely A itself) then there is nothing to do. So, assume that E.a/ and E.b/ are two differ-

ent blocks of P . We must show that they are disjoint.

Suppose they are not disjoint. Then there is some c 2 A for which c 2 E.a/ and

c 2 E.b/. The first implies that .a; c/ 2 E and the second that .c; b/ 2 E . Transitivity then

implies .a; b/ 2 E . But Theorem 1.4.3 then implies that E.a/ D E.b/, which contradicts

our original assumption that these are different blocks of P . Therefore they are disjoint.

Next, we show how a partition induces an equivalence relation.

Theorem 1.4.6 If P is a partition of a set A, then the relation R on A defined by

R WD
˚

.a; b/ 2 A � A W a is in the same block of P as is b
	

(1.7)

is an equivalence relation on A.

Proof: Let P D fP1; : : : ; Pkg be a partition of the set A. We must prove that the relation

R defined in (1.7) is an equivalence relation.

Reflexive: Let a 2 A. Since P is a partition of A, the element a belongs to exactly one

block Pi . Clearly a is in the same block as itself, so .a; a/ 2 R. Therefore R is reflexive.
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36 1. Principles of Combinatorics

Symmetric: Suppose .a; b/ 2 R. This means that a is in the same block of P as b.

But then b is in the same block of P as a, so .b; a/ 2 R. Therefore R is symmetric.

Transitive: Suppose .a; b/ 2 R and .b; c/ 2 R. This means that a is in the same block

of P as b, and also that b is in the same block of P as c. But, since P is a partition and

hence each element of A belongs to exactly one block, this means that a is in the same

block of P as c, so .a; c/ 2 R. Therefore R is transitive.

We can now demonstrate the bijection between equivalence relations and partitions.

Theorem 1.4.7 If A is a finite set, then the number of possible equivalence relations on A

equals the number of possible partitions of A.

Proof: Let A be a finite set. We use the bijection principle. Define the sets

E WD fE W E is an equivalence relation on Ag
P WD fP W P is a partition of Ag

and the function f W E �! P by

f .E/ D
˚

E.a/ W a 2 A
	

:

We must prove that this is a bijection. First note that, by Theorem 1.4.5, that f .E/ is indeed

a partition of A.

One-to-one: Let E1 and E2 be two unequal equivalence relations on A. This means,

without loss of generality, that there exists a 2-list .a1; a2/ in E1 but not E2.

Since .a1; a2/ 2 E1, we know that a2 2 E1.a1/ and hence that a1 and a2 are in the

same block of the partition f .E1/. But since .a1; a2/ 62 E2, we know that a2 62 E2.a1/ and

hence that a1 and a2 are not in the same block of the partition f .E2/. Therefore these two

partitions are not the same: f .E1/ 6D f .E2/.

Onto: Let P be a partition of A. Construct the set E shown in (1.7), which Theorem

1.4.6 guarantees is an equivalence relation. Then it quickly follows that f .E/ D P , for the

equivalence classes of E are exactly the blocks of P .

The equivalence principle

Now we return to counting and show how to exploit equivalence relations for combinatorial

purposes.

Example: counting circular arrangements
In how many ways can we seat a group of four people around a circular table? Consider

two seatings the same provided that each person has the same left- and right-neighbors.

Let Œ4� be the set of people. Begin with the 4Š D 24 permutations of Œ4�, and then

consider two permutations equivalent if, when placed around a table, each person has the

same left- and right-neighbors. Given a permutation such as .3; 4; 2; 1/, it is equivalent to

itself and three other permutations, namely

.3; 4; 2; 1/� .4; 2; 1; 3/� .2; 1; 3; 4/� .1; 3; 4; 2/

where we have used � to denote the equivalence relation. These are obtained by rotating

the original seating .3; 4; 2; 1/ around the table. They are equivalent because any such
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rotation preserves each person’s left- and right-neighbors. Each permutation’s equivalence

class has size 4, so our initial count of 4Š must be too large by a factor of 4. The answer is

thus 4Š=4D 6.

It is helpful to arrange all 24 permutations according to their equivalence classes:

class 1: .1; 2; 3; 4/ .2; 3; 4; 1/ .3; 4; 1; 2/ .4; 1; 2; 3/

class 2: .1; 2; 4; 3/ .2; 4; 3; 1/ .4; 3; 1; 2/ .3; 1; 2; 4/

class 3: .1; 3; 2; 4/ .3; 2; 4; 1/ .2; 4; 1; 3/ .4; 1; 3; 2/

class 4: .1; 3; 4; 2/ .3; 4; 2; 1/ .4; 2; 1; 3/ .2; 1; 3; 4/

class 5: .1; 4; 2; 3/ .4; 2; 3; 1/ .2; 3; 1; 4/ .3; 1; 4; 2/

class 6: .1; 4; 3; 2/ .4; 3; 2; 1/ .3; 2; 1; 4/ .2; 1; 4; 3/

Notice that we counted equivalence classes (there are six) and not permutations (24).

Statement of the principle

The previous example typifies the use of the equivalence principle: make an over-count,

introduce an equivalence relation, and then divide the over-count by the size of each equiv-

alence class. The equivalence principle only applies when all the equivalence classes have

the same size. Chapter 5, on Pólya’s theory of counting, extends the equivalence principle

to when the equivalence classes have unequal sizes.

Theorem 1.4.8 (equivalence principle) Let E be an equivalence relation on a finite set

A. If for some positive integer C every equivalence class of E has size C , then E has
jAj
C

equivalence classes.

Proof: Assume that E is an equivalence relation on a finite set A, and also that there exists

a positive integer C such that every equivalence class of E has size C . Let k be the number

of equivalence classes of E . We need to prove that k D jAj=C .

By Theorem 1.4.5, the equivalence classes of E partition A. Say this partition into

equivalence classes is fP1; P2; : : : ; Pkg. This means, in particular, that

jP1j C jP2j C � � � C jPkj D jAj:
But jPi j D C for all i , so the equation reads kC D jAj, or k D jAj=C .

Question 40 In how many ways can we seat a group of n people around a circular table?

Example: counting pairings

In how many different ways can we arrange 10 people into five pairs?

Let Œ10� be the set of people. Consider the 10Š permutations of Œ10�, of which one

example is .3; 2; 9; 10; 1; 5; 8; 7; 4; 6/. Then build an arrangement from each permutation

by placing adjacent pairs together. The example permutation leads to the pairing

f3; 2g f9; 10g f1; 5g f8; 7g f4; 6g:
Consider two permutations of Œ10� equivalent if they result in the same pairing. There are

many permutations of Œ10� that are equivalent to the given permutation. If we swap the

position of the elements in positions 1 and 2, and/or those in positions 3 and 4, and so on,

we obtain the same pairing. Using� to denote the equivalence relation, one way to do this

on the example permutation is

.3; 2; 9; 10; 1; 5; 8; 7; 4; 6/� .3; 2; 10; 9;
„ƒ‚…

swap

1; 5; 7; 8;
„ƒ‚…

swap

6; 4
„ƒ‚…

swap

/:
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38 1. Principles of Combinatorics

We may also rearrange the positions of the pairs as a unit, as in

. 3; 2;
„ƒ‚…

pair 1

9; 10;
„ƒ‚…

pair 2

1; 5;
„ƒ‚…

pair 3

8; 7;
„ƒ‚…

pair 4

4; 6
„ƒ‚…

pair 5

/ � . 8; 7;
„ƒ‚…

pair 4

3; 2;
„ƒ‚…

pair 1

9; 10;
„ƒ‚…

pair 2

4; 6;
„ƒ‚…

pair 5

1; 5
„ƒ‚…

pair 3

/:

Question 41 Give two permutations equivalent to .10; 9; 8; 7; 6; 5; 4; 3; 2; 1/ under�.

In general, any permutation of Œ10� is equivalent to 25 � 5Š D 3840 permutations, cor-

responding to the 25 ways to rearrange the pairs and the 5Š ways to order the pairs. By the

equivalence principle, there are
10Š

25 � 5Š
D 945

different ways to pair 10 people into five pairs. In fact, we have counted the number of

partitions of Œ10� into five blocks where each block has size 2.

Question 42 In how many different ways can we arrange 2n people into n pairs?

Example: formula for
�

n

k

�

Here is how to use the equivalence principle to justify the formula
�

n
k

�

D .n/k

kŠ
that we

mentioned in Section 1.1. First we examine the special case n D 5 and k D 3. How many

3-subsets does the set Œ5� have?

First list all of the 3-permutations of Œ5�, of which there are .5/3 D 60. They are shown

in Figure 1.5. Recall that order matters in a permutation but not in a set. Let’s define the

following equivalence relation on the set of 3-permutations: consider two 3-permutations

equivalent if they contain exactly the same elements. This an equivalence relation. Also,

each equivalence class has size 3Š because there are 3Š ways to reorder the three elements.

(The boxes in Figure 1.5 delineate the equivalence classes.) By the equivalence principle

there are .5/3

3Š
equivalence classes. Each equivalence class corresponds to a different 3-

subset of Œ5�, so the number of 3-subsets of Œ5� is .5/3

3Š
.

Question 43 Now generalize to prove the formula
�

n
k

�

D .n/k

kŠ
.

Are they equivalence relations?

We didn’t formally prove that the notions of equivalence used in the last three examples

were indeed equivalence relations. For many examples a justification along informal lines

would suffice. In the circular arrangement question, one could do this for “equivalent under

rotation” as follows. Is any seating of four people equivalent to itself? Yes, just don’t rotate

it. Also if seating A is equivalent to seating B via some rotation, then B is equivalent to

seating A by reversing the original rotation. Finally, if A is equivalent to B and B to C, then

A is equivalent to C by composing the two rotations.

An application of the equivalence principle that requires a relatively complex equiva-

lence relation should include a proof of such. However, many don’t.

Summary

An equivalence relation is a relation on a set that is reflexive, symmetric, and transitive.

There is a natural correspondence between an equivalence relation on a set and a partition

of that set. That an equivalence relation partitions a set leads to the equivalence principle.
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.1; 2; 3/ .1; 2; 4/ .1; 2; 5/ .1; 3; 4/ .1; 3; 5/

.1; 3; 2/ .1; 4; 2/ .1; 5; 2/ .1; 4; 3/ .1; 5; 3/

.2; 1; 3/ .2; 1; 4/ .2; 1; 5/ .3; 1; 4/ .3; 1; 5/

.2; 3; 1/ .2; 4; 1/ .2; 5; 1/ .3; 4; 1/ .3; 5; 1/

.3; 1; 2/ .4; 1; 2/ .5; 1; 2/ .4; 1; 3/ .5; 1; 3/

.3; 2; 1/ .4; 2; 1/ .5; 2; 1/ .4; 3; 1/ .5; 3; 1/

.1; 4; 5/ .2; 3; 4/ .2; 3; 5/ .2; 4; 5/ .3; 4; 5/

.1; 5; 4/ .2; 4; 3/ .2; 5; 3/ .2; 5; 4/ .3; 5; 4/

.4; 1; 5/ .3; 2; 4/ .3; 2; 5/ .4; 2; 5/ .4; 3; 5/

.4; 5; 1/ .3; 4; 2/ .3; 5; 2/ .4; 5; 2/ .4; 5; 3/

.5; 1; 4/ .4; 2; 3/ .5; 2; 3/ .5; 2; 4/ .5; 3; 4/

.5; 4; 1/ .4; 3; 2/ .5; 3; 2/ .5; 4; 2/ .5; 4; 3/

f1; 2; 3g f1; 2; 4g f1; 2; 5g f1; 3; 4g f1; 3; 5g

f1; 4; 5g f2; 3; 4g f2; 3; 5g f2; 4; 5g f3; 4; 5g

Figure 1.5. The 3-permutations of Œ5� and their corresponding 3-subsets.

When we use the equivalence principle we re-cast the original problem as one of counting

the equivalence classes of a convenient equivalence relation. It applies only when each

equivalence class has the same size.

Exercises

1. Consider a small version of the problem solved in this section: How many ways are

there to arrange four people into two pairs? Write out all the permutations of Œ4� and

then group them into equivalence classes. What is the size of each equivalence class

and what then is the answer to the original question?

2. Let A D Œn�. What are, respectively, the maximum and minimum possible size of an

equivalence relation on A? Prove that you are correct.

3. Let E be an equivalence relation on a set A. What is E�1? Prove your answer.

4. Prove that congruence modulo n, as defined in (1.5) on page 33, is an equivalence

relation on Z.

5. Fill in the blank and then prove the statement: An equivalence relation on A is a

function A �! A if and only if .

6. Let f W A �! B . Define a relation� on A by a1 � a2 if and only if f .a1/ D f .a2/.

Give a quick proof that this is an equivalence relation. What are the equivalence

classes? Explain intuitively.

7. Solve the circular seating arrangements problem for four people, but with two seatings

considered equivalent provided that each person has the same set of neighbors. (I.e.,

we don’t distinguish between left- and right-neighbors.)

8. How many ways are there to seat five women and five men around a circular table if

the seating alternates man-woman-man-woman, etc.?
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40 1. Principles of Combinatorics

9. In how many ways can we arrange 10 chairs of nine different colors (there are two

chairs of one color, hence they are indistinguishable) around a circular table?

10. In how many ways can we split a group of 10 people into two groups of size 3 and

one group of size 4?

11. How many partitions of Œn� into two blocks are there? How many partitions of Œn� into

n� 1 blocks are there?

12. Prove that the product of any k consecutive positive integers is divisible by kŠ.

13. Use the equivalence principle to prove the formula .n/k D nŠ
.n�k/Š

. In other words,

count the k-permutations of Œn� by first counting the permutations of n (of which there

are nŠ) and then defining an appropriate equivalence relation on the set of permutations

of Œn�.

14. Use the equivalence principle to prove the formula
�

n
k

�

D nŠ
kŠ .n�k/Š

. (This requires a

different proof than the one we gave in this section, because the numerator here is nŠ

and not .n/k . That is, your equivalence relation should be on the set of permutations

of Œn�, not on the set of k-permutations of Œn�.)

15. How many different necklaces can we make from n beads of different colors? Con-

sider two necklaces the same if (like in a circular arrangement) one can be obtained

from the other via rotation or if (unlike in a circular arrangement) one can be obtained

from the other via flipping the necklace over.

16. Let R1 and R2 be equivalence relations on a set A.

(a) Is R1 [R2 an equivalence relation on A? Prove or disprove.

(b) Is R1 \R2 an equivalence relation on A? Prove or disprove.

1.5 Existence and the pigeonhole principle

In the final section of this chapter we discuss a principle that concerns existence rather than

enumeration.

Theorem 1.5.1 (basic pigeonhole principle) If more than n objects are distributed among

n boxes, then some box must contain at least two objects.

A proof by contradiction works: if every box contained at most one object, then we must

have distributed at most n objects in the first place.

The pigeonhole principle is pure common sense. But, when cleverly applied, it can

produce surprising or counterintuitive results. We will make use of the pigeonhole principle

on a couple of occasions throughout the book. A highlight is Section 6.4 on Ramsey theory.

Ramsey theory concerns generalized versions of the pigeonhole principle and contains

some of the toughest research problems in combinatorics today.

First examples

Easy applications of the pigeonhole principle

You attend a major-league baseball game and park your car in the stadium lot. Must there

be two cars in the lot for which the last three digits of the odometer are exactly the same?
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1.5. Existence and the pigeonhole principle 41

Also, there are 48,000 people at the baseball game. Must two people share the same birth

date (month, day, and year)?

The answer to the first question is probably. There are 1000 possibilities for the last

three digits of an odometer: 000 through 999. As long as there are at least 1001 cars in the

lot, then the basic pigeonhole principle guarantees that two cars are showing the same last

three digits.

Question 44 Must there be a car in the lot that has the same last three digits showing as

your car? Explain.

The answer to the question about birth dates is yes. Be generous and say the people

at the game range in age from 0 to 120 years old and that each year has 366 days. This

produces 121 � 366 D 44;286 possible month-day-year birthdays. Since any distribution of

48;000 objects (the people at the game) into 44;286 boxes (the possible birthdays) contains

a box with at least two objects, there must be at least two people at the game who share the

same birth date.

Others have used the pigeonhole principle to argue that large cities must contain a

certain number of people with the same number of hairs on their head. (Apparently a good

upper bound on the number of hairs on a human head is 300,000.) Results like these are

fascinating to think about. They guarantee the existence of something without the hassle of

actually finding it.

Points in a square

Place five points anywhere inside a unit square. Prove that there are two points that are at

most 1=
p

2 units apart.

Divide the unit square into four equal-sized smaller squares, like a windowpane. Since

there are five points and four smaller squares, one of the smaller squares contains two

points by the pigeonhole principle. This smaller square measures 1=2 unit by 1=2, and the

farthest away that two points can be in such a square is 1=
p

2 which is the length of the

diagonal. Figure 1.6 gives a picture.

Question 45 Apply the same analysis to 10 points placed in a unit square. What distance

can you guarantee? Prove it.

Mutual friends

In a certain group of seven people, each person has at least three friends among the mem-

bers of the group. If two people in the group are not friends, then must they have a mutual

Figure 1.6. Five points in a unit square.
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42 1. Principles of Combinatorics

friend in the group? (“Mutual friend” means: If Tommy and Annie both know Billy, then

Billy is a mutual friend of Tommy and Annie.)

Take two people that are not friends and call them A and B. Other than A and B, there

are five people in the group. Since A’s list of friends has at least three names from these

five, and so does B’s list, the two lists have a total of at least six names. But with only

five possible names to choose from, the pigeonhole principle implies that some name must

appear twice—a mutual friend of A and B.

If we relax the requirement of “at least three friends” to “at least two friends,” does the

result necessarily hold? The answer is no.

Question 46 Give a counterexample. (A helpful visual is to use dots to represent people

and to connect two dots to indicate friends.)

A more general theorem quickly follows from the seven-person example.

Theorem 1.5.2 Take any group of n people in which each person has at least bn=2c friends

among the members of the group. If two people in the group are not friends, then they must

have a mutual friend in the group.

Question 47 Prove the theorem. First, understand why bn=2c is the right number.

Exercise 5 asks you to show that bn=2c is best possible. To help you understand any possi-

ble distinction that might arise between even and odd values of n, first answer the following

question.

Question 48 Find a counterexample, similar to the one you found for the seven-person

instance earlier, to show that the result of the theorem does not necessarily hold with n D 8

people and where each person has at least three friends.

If you are familiar with graph theory (see Chapter 6), then you might recognize the

theorem as a disguised form of the following result: in any n-vertex simple graph with

minimum degree at least bn=2c, any two vertices are either adjacent or have a common

neighbor.

Functions and the pigeonhole principle

The pigeonhole principle can be re-stated in the language of functions.

Theorem 1.5.3 (basic pigeonhole principle, function version) If A and B are finite, non-

empty sets with jAj > jBj, then no function A �! B can be one-to-one.

The next question is whether we can say something stronger. Consider any function from

Œ10� to Œ3�, say

f D
˚

.1; 2/; .2; 1/; .3; 2/; .4; 2/; .5; 3/; .6; 1/; .7; 3/; .8; 3/; .9; 2/; .10; 2/
	

:

Since Œ10� is relatively large compared with Œ3�, we should expect that some elements in

Œ3� should have a lot of elements of Œ10� mapped to them. Indeed if we compute the inverse

images of each b 2 Œ3�, we see that

f �1.1/ D f2; 6g
f �1.2/ D f1; 3; 4; 9; 10g
f �1.3/ D f5; 7; 8g

and in particular jf �1.2/j D 5 which is relatively large. Remember that the inverse relation

f �1 is not in general a function, so that f �1.1/ is the set of elements in Œ10� that map to

1.
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1.5. Existence and the pigeonhole principle 43

Question 49 Give an example of a function Œ10� �! Œ3� for which f �1.1/ D ;. For such

a function, must either f �1.2/ or f �1.3/ be of a certain size? What size?

Intuitively, we expect each element of Œ3� to be the image of 10
3

elements of Œ10� on the

average. We can make this more precise by saying that some element of Œ3� must be the

image of at least 10
3

elements of Œ10�. For the above function it happens for the element 2,

and it also happens for the function you created in Question 49.

To see why, suppose for sake of contradiction that every element of Œ3� were the image

of fewer than 10
3

elements of Œ10�; that is, jf �1.b/j < 10
3

for each b 2 Œ3�. This would

mean that

10 D
3
X

bD1

jf �1.b/j <
3
X

bD1

10

3
D 3 � 10

3
D 10;

or 10 < 10, a contradiction. Therefore there is some b� 2 Œ3� for which jf �1.b�/j >
10
3

.

Of course, the number jf �1.b/j on the left side of the inequality is an integer, so we can

sharpen the right side to d10
3
e D 4.

The more general result is what we refer to as the pigeonhole principle.

Theorem 1.5.4 (pigeonhole principle) If A and B are finite, nonempty sets and f W A �!
B is a function, then there exists some element of B that is the image of at least

l
jAj
jBj

m

ele-

ments of A.

Proof: Assume that A and B are finite, nonempty sets and that f is a function from A to

B .

First we prove that there exists some b� 2 B that is the image of at least jAj
jBj elements

of A. For sake of contradiction, assume that every b 2 B is the image of fewer than jAj
jBj

elements of A. Then

jAj D
X

b2B

jf �1.b/j <
X

b2B

jAj
jBj D jBj �

jAj
jBj D jAj;

a contradiction. Therefore some b� 2 B is the image of at least jAj
jBj elements of A. Since

the number of elements that map to b� must be an integer, we can sharpen the bound to
l

jAj
jBj

m

.

Returning to the odometer example at the beginning of this section, if 5076 cars park

in the lot, then the lot contains at least d5076
1000
e D 6 cars that have the same last three digits

showing.

Question 50 What conclusion results when you apply the pigeonhole principle to a func-

tion f W Œn2 C 1� �! Œn�? To a function g W A �! B with jAj < jBj?

k-to-one functions

A function is one-to-one provided that each element of its codomain is the image of at

most one element of its domain. A function is two-to-one provided that each element of its

codomain is the image of at most two elements of its domain. Here is a general definition.

Definition 1.5.5 (k-to-one) A function is k-to-one provided that each element of its co-

domain is the image of at most k elements of the domain.
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44 1. Principles of Combinatorics

Pictorially, a k-to-one function has at most k arrows pointing to each element of the

codomain.

The function f W Œ10� �! Œ3� given at the beginning of this subsection has

jf �1.1/j D 2; jf �1.2/j D 5; jf �1.3/j D 3;

so this function is five-to-one.

Question 51 Why is any k-to-one function also .k C 1/-to-one?

Just as we rephrased the basic pigeonhole principle (Theorem 1.5.1) via the impossi-

bility of a one-to-one function (Theorem 1.5.3), so too can we rephrase Theorem 1.5.4.

Theorem 1.5.6 (pigeonhole principle) If A and B are finite, nonempty sets, then no func-

tion A �! B can be k-to-one for any value of k smaller than
l

jAj
jBj

m

.

Exercise 9 asks you to prove the theorem.

Two harder examples

Example: 0s and 1s

For each n > 0, prove that there is an integer comprised only of the digits 0 and 1 that is

divisible by n.

This requires a very subtle application of the pigeonhole principle! Here is an illustra-

tion of the idea when n D 12. Take the 13-set

A WD f1; 11; 111; : : : ; 1111111111111
„ ƒ‚ …

13 ones

g:

Divide each number in A by 12 and record the remainder. Since each remainder must be

in the 12-set f0; 1; 2; : : : ; 11g, the pigeonhole principle implies that two of the remainders

must be the same. Take any two numbers in A that have the same remainder when divisible

by 12 and subtract the smaller from the larger. The result is a number (1) that is divisible

by 12, and (2) whose only digits are 0 and 1.

Question 52 Division algorithm review: Prove that if b and c both have the same remain-

der when divided by a, then a divides b � c.

If you were to work out the remainders by hand, for concreteness, you’d find that both

11 and 11111 have the same remainder (namely 11) when divided by 12. This means that

11111 � 11 D 11100 is divisible by 12. (Indeed, 11100=12 D 925.) There are other pairs

that work; for example, 111 and 111111 both have remainder 3.

For a formal proof, consider the .nC 1/-set

A WD f1; 11; 111; 1111; : : : ; 111 � � �1
„ ƒ‚ …

nC 1 ones

g:

The remainder when each element of A is divided by n belongs to the n-set B WD f0; 1; : : : ;

n � 1g. Let f W A �! B be the function that associates each element of A with its

remainder when divided by n. Since f cannot be one-to-one, there exist two elements of

A that have the same remainder when divided by n. Call them a1 and a2 where a1 > a2.

But then a1 � a2 is divisible by n and its digits are all either 0 or 1.
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The Erdős-Szekeres Theorem

You ask a friend to write down a sequence of 10 different real numbers. Before looking at

the sequence you spend a moment meditating with your eyes shut and then declare, “I can

circle four numbers in your sequence so that when read from left to right, they are either

in increasing or decreasing order.” Sure enough, it works for your friend’s sequence. (Your

friend is not impressed. But they should be; read on.)

For example, say your friend wrote down the sequence

100; 2; �17; �=4; �2:3; 57; 0; �2:4; �0:2; �4:

There are no increasing subsequences of length 4 because the longest such subsequence

has length 3. One is shown in bold below:

100; 2; �17; �=4; �2:3; 57; 0; �2:4; �0:2; �4:

But there is a decreasing subsequence of length 4:

100; 2; �17; �=4; �2:3; 57; 0; �2:4; �0:2; �4:

Actually there is a decreasing subsequence of length 5 if we tack on �4 to the end, but

length 4 is all that we will be able to guarantee in general. It is possible that the sequence

your friend writes has both kinds of subsequences.

Question 53 What is an example of a length-10 sequence of distinct real numbers that

has both an increasing subsequence of length (at least) 4 and a decreasing subsequence of

length (at least) 4?

If you instead ask your friend for a sequence of 17 distinct real numbers, you can

guarantee an increasing or decreasing subsequence of length 5. The general result is known

as the Erdős-Szekeres theorem.

Theorem 1.5.7 (Erdős-Szekeres) For n > 1, if S is a sequence of n2 C 1 distinct real

numbers, then S contains either an increasing subsequence of length nC1 or a decreasing

subsequence of length nC1. Furthermore, this result is best possible in the sense that n2C1

cannot be replaced by n2.

Let’s first understand the proof in the context of the length-10 example. To each element

x in your friend’s sequence, associate a positive integer LIS.x/ that equals the length of the

longest increasing subsequence starting with and including x. The LIS function behaves as

follows on the example sequence:

element x 100 2 �17 �=4 �2:3 57 0 �2:4 �0:2 �4

LIS.x/ 1 2 3 2 2 1 1 2 1 1

So LIS.100/ D 1 because 100 is the largest number in the sequence. But LIS.0/ D 1 as

well because no number to the right of 0 is larger than 0. And LIS.�17/ D 3 because

�17;�2:3; 0 is a longest increasing subsequence starting with �17.

Question 54 What are the LIS values for the sequence 3; 8; 5; 2; 7; 1; 10; 9; 4; 6?

Once your friend writes a sequence of 10 different real numbers then you should com-

pute the LIS values for each element. If LIS.x/ > 4 for any sequence element x then

you are home free: there is an increasing subsequence of length 4. This happened in the
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sequence of Question 54. But what if that doesn’t happen? What if LIS.x/ 6 3 for every

element x?

This happened with the table given above. Here comes the magic. Since each of the

10 LIS values must be 1, 2, or 3, the pigeonhole principle guarantees the existence of

d10
3
e D 4 elements that share the same LIS value. In fact, LIS.x/ D 1 for five (not just

four) different values of x:

LIS.100/ D LIS.57/ D LIS.0/ D LIS.�0:2/ D LIS.�4/ D 1:

Better yet, these values of x form a decreasing subsequence.

Will this always work? There are two questions. One, will those elements that share a

common LIS value always produce a decreasing subsequence? Two, if so, will the subse-

quence be long enough? Question one just requires a little reasoning, while question two

requires the pigeonhole principle. We tie up both loose ends in the proof.

Proof of Theorem 1.5.7: Let n > 1 and suppose S is a sequence of n2 C 1 distinct real

numbers. To each number x in S associate the value LIS.x/ which gives the length of the

longest increasing subsequence starting with, and including, x.

If LIS.x/ > nC 1 for some element x of the sequence, then we have found an increas-

ing subsequence of length nC 1.

If not, then LIS.x/ 6 n for each element x of the sequence. The LIS function maps the

sequence (treated as an .n2 C 1/-set) to the set Œn� (because 1 6 LIS.x/ 6 n for all x). By

the pigeonhole principle, some element of Œn� is the image of at least

�
n2 C 1

n

�

D
�

nC 1

n

�

D nC 1

sequence elements. Call these sequence elements x1; x2; : : : ; xnC1 and assume that they

appear in the sequence from left to right in that order. We claim that these elements form a

decreasing sequence of length nC 1, i.e.,

x1 > x2 > � � � > xnC1:

To see why, suppose for sake of contradiction that x1 < x2. We know that the length of the

longest increasing subsequence starting with x2 is LIS.x2/. Take one such sequence and

put x1 on the front of it. We now have an increasing subsequence starting with x1 that has

length LIS.x2/C1. But since LIS.x1/ D LIS.x2/, we now have an increasing subsequence

starting with x1 of length LIS.x1/ C 1. Impossible! The longest increasing subsequence

starting with x1 has length LIS.x1/. This contradiction shows that x1 > x2.

The same argument shows that x2 > x3, and so forth. Therefore S has a decreasing

subsequence of length nC 1. Exercise 7 assigns you the task of proving the second part of

the theorem.

See Exercise 8 for a more general version.

Summary

The various theorems known as the pigeonhole principle ensure the existence of an element

of a function’s codomain that has a “large” inverse image. A concrete way to state the
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pigeonhole principle is: given any distribution of k objects to n boxes, some box receives

at least dk
n
e objects. The basic pigeonhole principle is intuitive, but clever applications can

lead to nonintuitive and deep results.

Exercises

1. A bag contains 97 pennies, 56 nickels, 410 dimes, 102 quarters, and three half-dollars.

You reach in and grab some coins. What is the fewest number of coins you must grab

in order to guarantee that you have two coins of the same value in your hand?

2. Let n be odd and suppose .x1; x2; : : : ; xn/ is any permutation of Œn�. Prove that the

product .x1�1/.x2�2/ � � � .xn�n/ is even. Is the result necessarily true if n is even?

Give a proof or counterexample.

3. Let n > 1, and let S be an .nC 1/-subset of Œ2n�. Prove that there exist two numbers

in S whose sum is 2nC 1.

4. Let n > 1, and let S be an .nC 1/-subset of Œ2n�. Prove that there exist two numbers

in S such that one divides the other.

5. In Questions 46 and 48, you constructed counterexamples to show that the bn=2c
of Theorem 1.5.2 is best possible by showing that it can’t be replaced by a smaller

number. Construct a general counterexample that works for any value of n.

6. Consider any five points in the plane that have integer coordinates.

(a) Prove that there are two points such that the midpoint of the line segment joining

those two points also has integer coordinates.

(b) Show that the conclusion in (a) is not necessarily true with only four points.

(c) Can you conjecture and prove a similar statement involving points in space with

integer coordinates?

7. Prove that the result of the Erdős-Szekeres theorem is best possible, in that it is pos-

sible for a sequence of n2 distinct real numbers to have neither an increasing subse-

quence of length nC 1 nor a decreasing subsequence of length nC 1.

8. This concerns a more general version of the Erdős-Szekeres theorem.

(a) Prove: For m; n > 1, if S is a sequence of mn C 1 distinct real numbers, then

S contains either an increasing subsequence of length m C 1 or a decreasing

subsequence of length nC 1.

(b) Prove that this result is best possible by showing that the result doesn’t necessar-

ily hold when mnC 1 is replaced by mn.

9. Prove Theorem 1.5.6.

10. Prove the following version of the pigeonhole principle. Let n1; n2; : : : ; nk be positive

integers. If we distribute n1Cn2C� � �Cnk�kC1 objects among k boxes, then there

is some i 2 Œk� for which the following is true: box i contains at least ni objects.

11. Suppose, in the Erdős-Szekeres theorem, we remove the requirement that the numbers

in the sequence be distinct. How should you change the statement of the theorem and

its proof so that a similar result holds?



“master” — 2010/9/20 — 12:30 — page 48 — #66
i

i

i

i

i

i

i

i

48 1. Principles of Combinatorics

12. (This exercise provides an alternative proof of the Erdős-Szekeres theorem.) Let S be

a sequence of n2C 1 distinct real numbers, n > 1. Suppose, for sake of contradiction,

that the conclusion of the theorem does not hold. For each element x of the sequence,

define g W S �! Œn� � Œn� by g.x/ D .i; d / where i is the length of the longest

increasing subsequence starting with x and d is the length of the longest decreasing

subsequence starting with x.

Explain why g is not one-to-one, and then complete the proof of the Erdős-Szekeres

theorem.

Travel Notes

The pigeonhole principle is also known as the Dirichlet drawer principle after Peter Dirich-

let (1805–1859), who is generally credited as the first mathematician to make explicit use

of it. Theorem 1.5.7 appears in Erdős & Szekeres (1935). The main subject of their paper

was a proof of the following result:

For any positive integer n, there exists some positive integer m (depending on n) so

that when any m points are placed in the plane in general position, there exists a subset

of n points that are the vertices of a convex n-gon.

Points are in general position when no three of them lie on the same line. When n D 4, the

smallest value of m that works is m D 5. In other words, if you draw any five points in the

plane such that no three of them lie on the same line, then there will be four points that are

the vertices of a convex quadrilateral, but this is not necessarily true when drawing four

points. The importance of their paper lies in the interest it later kindled in Ramsey theory.

At the time, Ramsey’s theorem was a little-known theorem in mathematical logic. The

Hungarian mathematician Paul Erdős (1913–1996) was a major contributer to the field of

Ramsey theory. See the accounts in Graham, Rothschild & Spencer (1980) and also Section

6.4 of this book.
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C H A P T E R 2

Distributions and Combinatorial Proofs

We spent the last chapter practicing basic counting techniques and learning the principles

that we will use in the rest of the book. In this chapter we begin our study of combinatorics

proper with two key concepts. The first is that of a distribution, which is an assignment of

objects to recipients. All of the counting problems in Chapter 1 can be reduced to counting

certain distributions. So, distributions provide a unifying framework for counting prob-

lems.

The second concept is that of a combinatorial proof. Combinatorialists enjoy the art

of constructing combinatorial proofs. These are fun to write and often more memorable or

insightful than a proof by, say, mathematical induction. In Section 1.1 we emphasized that

it is important to understand the kind of objects that expressions like .n/k or
�

n
k

�

count.

This understanding is essential in writing combinatorial proofs.

2.1 Counting functions

Distribution problems

Let’s return to some questions like those we answered in Section 1.1.

1. How many five-letter passwords are there if each letter is A–G?

2. How many of those passwords have no repeated letters?

The answers to these questions are 75 and .7/5, respectively.

Here is a new way to think about counting passwords. Consider the password DDFAD.

The following diagram represents this password as a distribution of five distinct objects

(labeled 1–5) to seven distinct recipients (labeled A–G):

A B C D E F G

1
2 34

5

The possible letters in the password are the recipients and are represented as bins labeled

A–G. The positions of the letters are the objects and are represented as balls numbered

1–5. Object i is placed in bin j if and only if letter j is in position i of the password. For

example, bin D contains objects labeled 1, 2, and 5 because DDFAD has a D in the first,

second, and fifth positions.

49
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50 2. Distributions and Combinatorial Proofs

Question 55 To what distribution does the password GGGAG correspond?

As another example, the password BFCGD corresponds to the following distribution:

A B C D E F G

1 23 45

Here, each recipient receives at most one object.

Question 56 If you rephrase Questions Q1 and Q2 at the beginning of Section 1.1 as

distribution problems, how would you label the objects and recipients in each case?

The idea is that in a counting question for which the answer is nk , the objects being

counted can be thought of as distributions of k distinct objects to n distinct recipients. Also,

in a question for which the answer is .n/k , the objects can be thought of as distributions of

k distinct objects to n distinct recipients where each recipient receives at most one object.

The 16 distributions

Objects in a distribution problem can be distinct or identical. They are distinct if they are

labeled so that you can tell them apart (think of balls with different numbers on them).

They are identical if they are unlabled and otherwise indistinguishable (think of balls all

having the same size and color). Likewise the recipients can be distinct or identical.

Recipients in a distribution problem may also have restrictions on the number of objects

they can receive. Typical situations involve no restrictions (like in the first question at the

beginning of this section), at most one object (like in the second question), at least one

object, or exactly one object. This gives a total of 16 different distributions as shown in the

table.

Distributions of how many objects recipients can receive

k objects to n recipients no restrictions 6 1 > 1 D 1

distinct distinct nk .n/k ? nŠ or 0

identical distinct ? ? ? ?

distinct identical ? ? ? ?

identical identical ? ? ? ?

We discussed the reason for the nk and .n/k entries earlier.

Question 57 Explain the reason for the “nŠ or 0” entry. Specifically, for what values of k

and n is the answer 0?

By the end of this chapter we will have the full picture. Additional nuances are possible

beyond those listed here—for example, a problem involving a mix of distinct and identical

objects—but these 16 types go quite far.

Functions as distributions

Here are four questions concerning different types of functions. In each case we rephrase

it in terms of distributions.

(a) How many functions Œ4� �! Œ3� are there?

H) Any such function is a distribution of four distinct objects (the elements of the



“master” — 2010/9/20 — 12:30 — page 51 — #69
i

i

i

i

i

i

i

i

2.1. Counting functions 51

domain) to three distinct recipients (the codomain). The answer is 34 since each object

can be assigned to one of three recipients. See the top of Figure 2.1.

Question 58 How many functions f W Œ6� �! Œ4� have f .3/ D 2?

(b) How many functions Œ3� �! Œ4� are one-to-one?

H) Any such function is a distribution of three distinct objects to four distinct recip-

ients such that each recipient receives at most one object. The answer is .4/3. See the

second part of Figure 2.1.

Question 59 How many one-to-one functions f W Œ4� �! Œ6� have 5 62 rng.f /?

1
2 3

1 2 3

function

4
1

2

3

1

2

3

4

no restrictions

objects
recipients

each receives at most one

1

2

3

one-to-one function

1

2

3

4

123

1 2 33 4

objects
recipients

12 3

1 2 3

1

2

3

4

bijective function

1

2

3

4
3 4

4

each receives exactly one

objects recipients

12 3

1 2 3

onto function

4
1

2

3

1

2

3

4

each receives at least one

objects

recipients

5

5

Figure 2.1. Functions and distributions.
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52 2. Distributions and Combinatorial Proofs

(c) How many functions Œ5� �! Œ3� are onto?

H) Any such function is a distribution of five distinct objects to three distinct recipi-

ents such that each recipient receives at least one object. These take more care to count

so we postpone the solution until after this example. See the third part of Figure 2.1.

(d) How many functions Œ4� �! Œ4� are bijective?

H) Any such function is a distribution of four distinct objects to four distinct recipi-

ents such that each recipient receives exactly one object. The answer is 4Š or .4/4. See

the bottom of Figure 2.1.

We now have three canonical problems whose answer is nk .

nk equals (1) the number of k-lists taken from an n-set; (2) the number of functions

from a k-set to an n-set; and (3) the number of distributions of k distinct objects to n

distinct recipients.

Here is the same for .n/k .

.n/k equals (1) the number of k-lists without repetition taken from an n-set; (2) the

number of one-to-one functions from a k-set to an n-set; and (3) the number of distri-

butions of k distinct objects to n distinct recipients such that each recipient receives

at most one object.

And here is the same for nŠ.

nŠ equals (1) the number of permutations of an n-set; (2) the number of bijections

from an n-set to an n-set; and (3) the number of distributions of n distinct objects to

n distinct recipients such that each recipient receives exactly one object.

Counting onto functions

We postpone the formula for the number of onto functions from a k-set to an n-set until

we have introduced Stirling numbers and inclusion-exclusion in Sections 2.3 and 3.1. In

the meantime, we tackle the problem of counting the onto functions Œ5� �! Œ3� in order to

understand the issues involved.

We count the complement. There are 35 functions from Œ5� to Œ3�. Those that fail to be

onto fall into two disjoint cases: (1) those that “miss” two elements of Œ3�, and (2) those

that miss only one element of Œ3�. Figure 2.2 shows a picture of a typical function in each

case.

In Case 1, there are three functions—those that map everything in Œ5� to a single ele-

ment of Œ3�. For Case 2, there are 3.25 � 2/ functions. This is because there are three ways

1

2

3

1

2

3

4

5

1

2

3

1

2

3

4

5

misses two elements misses one element

Figure 2.2. Two functions Œ5� �! Œ3� that are not onto.
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2.1. Counting functions 53

to specify the element of Œ3� that the function misses. Then there are 25�2 ways to specify

an onto function from Œ5� to the 2-subset of Œ3� that the function doesn’t miss. (Of the 25

functions from a 5-set to a 2-set, only two fail to be onto.) The number of onto functions

Œ5� �! Œ3� is therefore

35 �
�

3C 3.25 � 2/
�

D 150:

Question 60 Find the number of onto functions Œk� �! Œ3�.

Exercise 7 asks to take this one step further by finding the number of onto functions Œk� �!
Œ4�.

Combinatorial proofs

A combinatorial proof of an identity X D Y begins by asking a question and then answers

it using two different but correct approaches. One approach produces the answer X and

the other the answer Y . As long as we have answered correctly in both cases, we can then

conclude X D Y . We now give two examples of combinatorial proofs. You’ll notice that

the key step is in asking the right question.

Combinatorial proof #1

In this first proof we are given an identity and must come up with the combinatorial proof.

The identity is

.n/k D .n� 1/k C k � .n � 1/k�1 when n; k > 1. (2.1)

First we examine the special case and attach a concrete counting problem to it.

Question 61 How should you define .n/k when either n or k (or both) equals 0 so that the

formula (2.1) still holds?

Consider the identity (2.1) when k D 4 and n D 6, namely

.6/4 D .5/4 C 4 � .5/3:

We know that, among other things, .6/4 equals the number of ways to distribute four dis-

tinct objects to six distinct recipients. Let’s say the objects are concert tickets (with seat

assignments, so they are distinct) and the recipients are six of our friends.

We begin the proof by asking a question.

Question: How many ways are there to distribute four different concert tickets among

six friends such that each friend receives at most one ticket?

We already know one answer.

Answer 1: There are .6/4 ways.

Now we have to use a different method to count these distributions and obtain the answer

.5/4C4 � .5/3. The presence of theC in this answer suggests breaking into cases and using

the sum principle. The idea is to identify a particular friend and “condition on” (i.e., divide

into cases) whether that friend receives a ticket. Figure 2.3 shows the two cases and the

analysis for each.
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54 2. Distributions and Combinatorial Proofs

CASE 1: If Frank doesn’t receive a ticket, then...

...specify a distribution of the four tickets
among the other five friends.

Adam Ben Caleb Dan Ephraim Frank

1 24 3

no
ticket

CASE 2: If Frank receives a ticket, then...

Adam Ben Caleb Dan Ephraim Frank

2

...first specify that ticket

and then specify a distribution of the remaining
three tickets among the other five friends.

Adam Ben Caleb Dan Ephraim Frank

14 3 2

Figure 2.3. The reason why .6/4 D .5/4 C 4 � .5/3.

Answer 2: Say your friends are Adam, Ben, Caleb, Dan, Ephraim, and Frank. Divide

the distributions into two cases depending on whether Frank receives a ticket. If Frank

does not receive a ticket, then there are .5/4 ways to distribute the four tickets among

the other five friends.

If Frank does receive a ticket, then there are four ways to specify that ticket, and

then there are .5/3 ways to distribute the three remaining tickets among the other five

friends. There are 4 � .5/3 distributions in this case.

By the sum principle there are .5/4 C 4 � .5/3 distributions altogether.

This completes the combinatorial proof that .6/4 D .5/4C 4 � .5/3. It is no harder to prove

in general.

Theorem 2.1.1 For any n > 1 and k > 1, .n/k D .n � 1/k C k � .n � 1/k�1.

Combinatorial proof: How many ways are there to distribute k different concert tickets

among n friends such that each friend receives at most one ticket?

Answer 1: There are .n/k ways.

Answer 2: One of your friends is Frank. Condition on whether he receives a ticket.

If Frank does not receive a ticket, then there are .n � 1/k ways to distribute all k tickets

among the n�1 friends besides Frank. If Frank does receive a ticket, then there are k ways
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to specify that ticket and then .n � 1/k�1 ways to distribute the remaining k � 1 tickets

among the n � 1 friends besides Frank. Thus there are k � .n � 1/k�1 distributions in this

case. There are .n � 1/k C k � .n � 1/k�1 distributions in all.

Combinatorial proof #2

If you are handed an identity to prove, as we just did with equation (2.1), you can try to

come up with the right question to ask to reverse engineer the proof. But one advantage

of combinatorial proofs is that you can discover new identities “on the fly.” Here is an

example.

First let’s create a counting question, this time involving the answer nŠ. As we did the

last time we’ll experiment with a specific value of n.

Question: Given five blocks each having a different height, how many ways are there

to line them up from left to right in a row?

Again, one answer is easy.

Answer 1: There are 5Š ways.

In the end our identity will look like 5Š D Y where Y is Answer 2.

Now we get to be creative with Answer 2. There are a lot of things we could do but here

is one idea that can be adapted to prove other combinatorial identities. Any arrangement

of the blocks must either be in increasing order of height from left to right or else is not.

Label the blocks 1-5 in order of increasing height. We condition on the location of the first

mistake that ruins the perfect increasing order 1-2-3-4-5. Figure 2.4 shows the analysis.

Answer 2: Condition on the first position in which a mistake is made in the increasing

order 1-2-3-4-5.

Case 1: No mistake is made. The blocks are in increasing order and there is only

one such way to arrange them.

Case 2: A mistake is made with the first block. There are four ways to specify the

first block—any except block 1—and then 4Š ways to line up the remaining blocks.

By the product principle there are 4.4Š/ ways to line them up in this case.

Case 3: A mistake is made with the second block. This means that block 1 is first,

followed by any block except block 2. Thus there are three ways to specify the second

block, and then 3Š ways to line up the remaining blocks. By the product principle there

are 3 � 3Š ways in this case.

Cases 4 and 5 are similar and their answers are 2 � 2Š and 1 � 1Š, respectively.

By the sum principle there are 1C 1.1Š/ C 2.2Š/C 3.3Š/ C 4.4Š/ ways to line up

the blocks.

Question 62 Why can’t the first mistake occur with the fifth block?

We’re now ready for the general version.

Theorem 2.1.2 For any n > 1, nŠ D 1C
n�1
X

j D1

j.j Š/.

Question 63 Give a combinatorial proof of the theorem by modifying the argument we

used for n D 5.
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1

CASE 1: No mistakes

then line up
remaining
blocks in
4! ways.

1 2 3 4 5

CASE 2: First mistake at first position

23 4 5

CASE 3: First mistake at second position

1 2 345

CASE 4: First mistake at third position

1 2 34 5

CASE 5: First mistake at fourth position.

1 2 3 45

Specify first
mistake in
four ways

then line up
remaining
blocks in
3! ways.

Specify first
mistake in
three ways

then line up
remaining
blocks in
2! ways.

Specify first
mistake in
two ways

then line up
remaining
blocks in
1! ways.

Specify first
mistake in
one way

Figure 2.4. The reason why 5Š D 1 C 1.1Š/ C 2.2Š/ C 3.3Š/ C 4.4Š/.

Discussion

To reconstruct the proof of Theorem 2.1.1, we can just remember the concert ticket ques-

tion and condition on whether Frank gets a ticket. To reconstruct the proof of Theorem

2.1.2, we can remember the block line-up question and condition on the first position in

which increasing order is ruined. The so-called “conditioning” idea divides the problem

into disjoint and exhaustive cases so that we can apply the sum principle. You might prefer

these ideas as an alternative to memorizing a formula like .n/k D .n�1/kCk � .n�1/k�1.

Summary

Many counting questions can be re-cast as distribution questions. In this section we counted

distributions of k distinct objects to n distinct recipients under three different conditions:

each recipient receives any number of objects, at most one object, and exactly one object.
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2.1. Counting functions 57

We then introduced combinatorial proofs via two examples. A combinatorial proof begins

with a question and then describes two different but correct approaches for answering that

question.

Exercises

1. Jeopardy! For each answer, create an accompanying counting question.

(a) nŠ � 1

(b) 204 � .20/4

(c) .10/5 C 5 � .10/4

2. You have 10 concert tickets to distribute among 15 friends. Of the 10 tickets, six have

assigned seating (so they are distinct) while four are general admission (so they are

identical). Each friend gets at most one ticket. How many ways are there to distribute

them?

3. How many eight-letter passwords using the letters A-Z are there in which up to

one letter is allowed to be used more than once? This means HVCKEWFX and

FOWFLQAZ and FBHHHRHT are allowed, but VSSLVRTF and LLLWWWFW are

not.

4. Consider the possible functions f W Œ7� �! Œ9�.

(a) How many have f .3/ D 8? How many have f .3/ 6D 8?

(b) How many have f .1/ 6D 5 and are one-to-one?

(c) How many have f .i/ even, for all i?

(d) How many have rng.f / D f5; 6g?
(e) How many in which f �1 is not a function?

5. How many one-to-one functions f W Œ5� �! Œ9� have 7 as the largest element of

rng.f /?

6. If f is a function and f .i/ D i then we call i a fixed point of f .

(a) How many functions Œ5� �! Œ5� have at least one fixed point?

(b) How many functions Œn� �! Œn� have no fixed points?

(c) How many bijections Œ4� �! Œ4� have no fixed points?

7. Find the number of onto functions Œk� �! Œ4�.

8. Give a non-combinatorial, algebraic proof of Theorem 2.1.1 that uses the formula

.n/k D nŠ
.n�k/Š

.

9. Give a combinatorial proof: For n > 1, nŠ D n � .n � 1/Š.

10. Give a combinatorial proof: For n > 1 and k > 1, .n/k D n � .n � 1/k�1.

11. Give a combinatorial proof: For n > 1 and k > 1, 2kn > maxfnk; kng. (Hint:

Compare relations to functions.)

12. Define
F WD

˚

functions f W f is a function Œk� �! Œn�
	

L WD
˚

lists .x1; x2; : : : ; xk/ W each xi is taken from Œn�
	

and define G W F �! L by G.f / D
�

f .1/; f .2/; : : : ; f .k/
�

. Prove that G is a

bijection. What combinatorial result does this establish?
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58 2. Distributions and Combinatorial Proofs

13. In the previous exercise, how does the set L change if the set F is changed to the set

of one-to-one, onto, or bijective functions, respectively?

14. Give a combinatorial proof: For n and k satisfying 1 6 k 6 n,

.n/k D
n
X

j Dk

k � .j � 1/k�1:

15. Let �n equal the number of permutations of Œn� having any length, including length 0

(the “empty permutation”). Then �1 D 2 because the permutations of Œ1� having any

length are . / and .1/. The permutations of Œ2� having any length are

. /; .1/; .2/; .1; 2/; and .2; 1/;

so �2 D 5. Set �0 D 1.

(a) Find �3 by complete enumeration.

(b) Give a combinatorial proof: For n > 1, �n D n�n�1 C 1.

(c) Use the identity in part (b) to find �10.

16. (ordered distributions) This exercise and others throughout this chapter that are la-

beled “ordered distributions” concern distributions wherein the order in which the

recipients receive the objects matters. Here are two examples of ordered distributions

of seven distinct objects to three distinct recipients:

1

2

1 2 3

5

6

3

4

7

5

2

1 2 3

1

6

3

4

7

By convention, objects near the bottom are received first (think of recipients 1–3 as

cashiers and the objects as customers in each cashier’s line). This means that the two

ordered distributions shown are different, even though they would be the same when

considered as ordinary distributions.

Let .n/.k/ equal the number of ordered distributions of k distinct objects to n distinct

recipients.

(a) Prove .n/.k/ D n.nC 1/.nC 2/ � � � .nC k � 1/.

(b) Explain why there are .k/n � .n/.k�n/ ordered distributions of k distinct objects

to n distinct recipients such that each receives at least one object.

(c) Explain combinatorially why kŠ
�

k�1
n�1

�

is also the answer to part (b).

Travel Notes

The book by Benjamin & Quinn (2003) entitled Proofs that Really Count: The Art of

Combinatorial Proof is an engaging, one-of-a-kind introduction to combinatorial proofs

in a lot of different areas of mathematics. Other good sources are the journals Mathemat-

ics Magazine and The College Mathematics Journal, both published by the Mathematical

Association of America.
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2.2 Counting subsets and multisets

Subsets and multisets as distributions

Here are three questions like those we answered in Section 1.1.

1. In a pick-three lottery involving the numbers 1–6, how many tickets are there?

2. If a store offers four donut varieties, how many orders for seven donuts are there?

3. How many orders in the previous question contain at least one donut of each variety?

In the first question, a ticket consists of a 3-subset of Œ6� so the answer is
�
6
3

�

. Here is a

distribution corresponding to the ticket f2; 4; 5g.

1 2 3 4 5 6

This is a distribution of three identical objects to six distinct recipients such that each re-

ceives at most one object. We throw a ball into bin j whenever j is an element of f2; 4; 5g.
Question 64 There are

�
n
k

�

ways to form a k-person committee from a group of n people.

Rephrase this as a distribution problem.

In the second question, a donut order is a 7-multiset taken from Œ4� so the answer is
��

4
7

��

. Here is a distribution corresponding to the multiset f2; 2; 2; 2; 3; 3; 4g.

1 2 3 4

This is a distribution of seven identical objects to four distinct recipients under no restric-

tions on the number of objects each can receive. We throw one ball into bin j per donut of

variety j that we order.

A donut order in the third question is a 7-multiset taken from Œ4� in which each element

of Œ4� appears at least once. There are
��

4
7�4

��

or
��

4
3

��

such orders because once we place

one donut of each variety in our bag, the rest of the order can be any 3-multiset taken from

Œ4�. Here is a distribution corresponding to the multiset f1; 1; 2; 3; 3; 3; 4g.

1 2 3 4

This is a distribution of seven identical objects to four distinct recipients such that each

receives at least one.

These examples show that subsets and multisets are equivalent to certain distributions

of identical objects to distinct recipients. Here are three canonical problems whose answer

is
�

n
k

�

.
�

n
k

�

equals (1) the number of k-subsets of an n-set; (2) the number of ways to form a

k-person committee from a group of n people; and (3) the number of distributions of

k identical objects to n distinct recipients such that each receives at most one object.
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Here are the same for
��

n
k

��

.
��

n
k

��

equals (1) the number of k-multisets taken from an n-set; (2) the number of ways

to order k donuts if a store sells n varieties; and (3) the number of distributions of k

identical objects to n distinct recipients.

These allow us to fill in the next line of our table of distribution problems.

Distributions of how many objects recipients can receive

k objects to n recipients no restrictions 6 1 > 1 D 1

distinct distinct nk .n/k ? nŠ or 0

identical distinct
��

n
k

�� �
n
k

� ��
n

k�n

��

1 or 0

distinct identical ? ? ? ?

identical identical ? ? ? ?

Question 65 Explain the reason for the last two answers on the second line of the table.

Pascal’s identity and Pascal’s triangle

Let’s discover and prove an identity for
�

n
k

�

on the fly. We begin with a special case. In how

many ways can we form a three-person committee from a group of five people?

For Answer 1 we know that there are
�
5
3

�

ways. To get another answer, let’s say the five

people are our friends Adam, Ben, Caleb, Dan, and Ephraim from Section 2.1. Divide the

possible committees into two types according to whether Ephraim is on the committee.

All possible committees

Committees with Ephraim Committees without Ephraim

fAdam, Ben, Ephraimg fAdam, Ben, Calebg
fAdam, Caleb, Ephraimg fAdam, Ben, Dang
fAdam, Dan, Ephraimg fAdam, Caleb, Dang
fBen, Caleb, Ephraimg fBen, Caleb, Dang
fBen, Dan, Ephraimg
fCaleb, Dan, Ephraimg
�

4
2

�

with Ephraim
�
4
3

�

without Ephraim
�

4
2

�

C
�
4
3

�

total

There are
�
4
2

�

committees with Ephraim because once he is on the committee we can spec-

ify the remaining two people in
�

4
2

�

ways. There are
�

4
3

�

committees without Ephraim be-

cause any such committee is just a three-person committee chosen from Adam, Ben, Caleb,

and Dan. Therefore by the sum principle, Answer 2 is
�

4
2

�

C
�

4
3

�

.

We have proved
�

5
3

�

D
�
4
2

�

C
�

4
3

�

. The same reasoning proves the following theorem

known as Pascal’s identity.

Theorem 2.2.1 (Pascal’s identity) For any n > 1 and k > 1,

 

n

k

!

D
 

n � 1

k � 1

!

C
 

n � 1

k

!

:
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Question 66 Prove Pascal’s identity. Then adapt the same idea to give a combinatorial

proof of a related identity: For any n > 1 and k > 1,
  

n

k

!!

D
  

n� 1

k

!!

C
  

n

k � 1

!!

:

Pascal’s identity leads to Pascal’s triangle, a triangular array of the nonzero numbers
�

n
k

�

for n and k satisfying 0 6 k 6 n. Its first eight rows are as follows:

n# k! 0 1 2 3 4 5 6 7

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

The entry in row n and column k is
�

n
k

�

. Pascal’s formula allows for easy computation of

this array: each entry equals its “northwestern” neighbor plus its “northern” neighbor. For

the first row and column, which have no such neighbors, we rely on the following boundary

conditions:
�

n
0

�

D 1 for n > 0 and
�

0
k

�

D 0 for k > 1. These make combinatorial sense.

The number of 0-subsets of an n-set is 1 because ; is the only such subset. Also, there are

no k-subsets of a 0-set for any value of k > 1.

Question 67 Use Pascal’s identity to find the ninth (i.e., n D 9) row of the table.

Combinatorial proofs

Quick ones
Two basic identities involving the numbers

�
n
k

�

are

 

n

k

!

D
 

n

n� k

!

for all n and k satisfying 0 6 k 6 n (2.2)

and

2n D
n
X

kD0

 

n

k

!

for all n > 0. (2.3)

Both have quick combinatorial proofs. To prove equation (2.2), observe that you can spec-

ify a k-person committee by either specifying those k people who are on it or equivalently

by specifying those n � k people that are not on it.

To prove equation (2.3), recall that there are 2n possible subsets of an n-set. We can

alternately count these subsets by organizing them into piles according to their size. There

are
�

n
k

�

subsets of size k, and summing this quantity over all k from 0 to n gives the right-

hand side of the equation.

Question 68 What is the sum of the numbers in row 15 (i.e., n D 15) of Pascal’s triangle?

(Answer this without computing row 15.)
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Committee-counting

We’ll use the committee-counting interpretation of
�

n
k

�

to prove two more identities. Here

is the first:
 

n

k

!

k D n

 

n� 1

k � 1

!

: (2.4)

Question: From a group of n people, in how many ways can we select a committee

of size k and also specify one of the people on the committee as the chair?

Answer 1: Count the 2-lists of the form (committee, chair). We may choose the com-

mittee in
�

n
k

�

ways, and then choose the chair from among those k people in one of k

ways. By the product principle, there are
�

n
k

�

k total ways.

Answer 2: Count the 2-lists of the form (chair, committee). We may first choose the

chair from among the n people in one of n ways. Then, from the n � 1 people that

remain, we may complete the committee by choosing k � 1 of them in
�

n�1
k�1

�

ways.

By the product principle, there are n
�

n�1
k�1

�

total ways.

Vandermonde’s formula

The following identity is known as Vandermonde’s formula:

k
X

j D0

 

m

j

! 

n

k � j

!

D
 

mC n

k

!

: (2.5)

To come up with a good question, observe that the right side counts the k-person commit-

tees we can form from a group of mC n people. The terms in the sum on the left suggest

that there are two types of people—say m men and n women—and that we can break into

cases according to the number of men on the committee.

Question: From a group of m men and n women, how many k-person committees

can we form?

Answer 1: There are
�

mCn
k

�

committees.

Answer 2: Condition on the number of men on the committee. If this number is

j , where 0 6 j 6 k, then there are
�

m
j

�

ways to specify the men. For each such

specification, there are
�

n
k�j

�

ways to specify the women so that the committee then

contains k people. By the product principle there are
�

m
j

��
n

k�j

�

committees having j

men. By the sum principle there are

k
X

j D0

 

m

j

! 

n

k � j

!

committees.

Donut orders

Let’s go back to donut orders. Suppose a store sells 10 varieties and we want to order a

half-dozen. There are
��

10
6

��

different orders. Focus on one particular variety, say glazed.

Any order for a half-dozen must contain between zero and six glazed donuts. There are
��

9
6

��

orders containing zero glazed,
��

9
5

��

orders containing one glazed, and so on up to
��

9
0

��
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orders containing six glazed. We just proved that
  

10

6

!!

D
  

9

6

!!

C
  

9

5

!!

C
  

9

4

!!

C
  

9

3

!!

C
  

9

2

!!

C
  

9

1

!!

C
  

9

0

!!

:

Question 69 Generalize and prove a version involving
��

n
k

��

instead of
��

10
6

��

.

The binomial theorem

The rows of Pascal’s triangle give the coefficients on each term when .xCy/n is expanded

and simplified. For example,

.x C y/4 D x4 C 4x3y C 6x2y2 C 4xy3 C y4

D
 

4

0

!

x4y0 C
 

4

1

!

x3y1 C
 

4

2

!

x2y2 C
 

4

3

!

x1y3 C
 

4

4

!

x0y4:

This is the subject of the binomial theorem.

Theorem 2.2.2 (binomial) For any integer n > 0 and any real numbers x and y,

.x C y/n D
n
X

kD0

 

n

k

!

xn�kyk :

Since x and y are real numbers, not necessarily positive integers, it seems that a combinato-

rial proof would be out of the question. We finesse this by first giving a combinatorial proof

that it is true for all positive integers x and y, and then explaining why that’s sufficient.

Suppose x and y are positive integers. How many n-letter passwords can we make

where there are x C y choices for each letter?

There are .xCy/n such passwords. For another approach, imagine that the letters come

from two completely different alphabets: Alphabet 1 which has x characters and Alphabet

2 which has y characters. Arrange the passwords into piles according to the number of

characters from Alphabet 2 they contain. If this number is k, where 0 6 k 6 n, then there

are
�

n
k

�

ways to specify the positions of the characters from Alphabet 2, then yk ways to

specify those characters, and finally xn�k ways to specify the characters from Alphabet 1

for the remaining n�k positions. Since k can range from 0 to n, by the sum principle there

are
nX

kD0

 

n

k

!

xn�kyk

passwords. This proves the binomial theorem when x and y are positive integers.

To extend the result to all real numbers x and y, note that the expression .x C y/n

is a polynomial in x and y. If a polynomial equation like that of the binomial theorem is

true for infinitely many values of x and y (here, all positive integers), then it is true for all

real numbers x and y. This result is known as the uniqueness of polynomials theorem. See

Exercise 13.

Counting integral solutions

We close with some examples illustrating another type of counting question that
��

n
k

��

an-

swers. The idea will prove useful when we study generating functions in Chapter 3.
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Examples

(a) How many solutions does z1Cz2Cz3Cz4 D 7 have, where each zi is a nonnegative

integer?

H) A solution is a 4-list of the form .z1; z2; z3; z4/ that satisfies the conditions in

the question. For example both .0; 4; 2; 1/ and .1; 0; 0; 6/ are solutions, but neither

.4; 2; 1; 2/ nor .�1; 0; 0; 8/ are.

Observe that the solutions are in one-to-one correspondence with the 7-multisets taken

from Œ4�: z1 is the number of 1s in the multiset, z2 is the number of 2s, and so on.

For example, the solution .0; 4; 2; 1/ corresponds to the multiset f2; 2; 2; 2; 3; 3; 4g.
Therefore there are

��
4
7

��

D
�
10
7

�

D 120 solutions.

(b) How many solutions does z1Cz2Cz3 D 15 have, where each zi is a positive integer?

H) Since each zi > 1, these solutions correspond to 15-multisets taken from Œ3�

where each element of Œ3� appears at least once. Therefore there are
��

3
15�3

��

D
��

3
12

��

D
�

14
12

�

D 91 solutions.

Notice that this problem is equivalent to counting the solutions to y1 C y2 C y3 D
15 � 3 where each yi is a nonnegative integer.

(c) How many solutions does z1Cz2Cz3C4z4 D 11 have, where each zi is a nonnegative

integer?

H) The 4z4 term throws a bit of a wrench into the works.

Question 70 Solve this problem by breaking into cases based on the value of z4.

The general idea is that
��

n
k

��

equals the number of solutions to z1 C z2 C � � � C zn D k

in nonnegative integers zi , and that
��

n
k�n

��

equals the number of solutions to the same

equation in positive integers zi .

Question 71 How many solutions does z1 C z2 C � � � C zn D k have where each zi is

either 0 or 1?

Summary

Subsets and multisets correspond to distributions of identical objects to distinct recipients.

In this section we provided combinatorial proofs of many important results involving the

binomial coefficients
�

n
k

�

among them Pascal’s identity and the binomial theorem. We also

examined how
��

n
k

��

counts the integer-valued solutions to certain equations.

Exercises

1. Jeopardy! For each answer, create an accompanying counting question.

(a)

 

n

0

!

C
 

n

1

!

C
 

n

2

!

(b)
10 � 9 � 8 � 7 � 6
5 � 4 � 3 � 2 � 1

(c)

 

20

10

! 

10

5

!
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(d)

bn=2c
X

j D0

  

n

2j C 1

!!

2. Justify combinatorially:

 

20

8

! 

8

5

! 

5

3

!

D
 

20

3

! 

17

2

! 

15

3

!

.

3. Give a bijective proof of Pascal’s identity by defining

A WD fsets S W S � Œn� and jS j D kg
B WD fsets T W T � Œn� 1� and jT j D k � 1g
C WD fsets U W U � Œn � 1� and jU j D kg

and then finding a bijection f W A �! B [ C .

4. Give combinatorial or bijective proofs of the following. Part of your job is to deter-

mine all values of n, k, and/or m for which the identities are valid.

(a) 3n D
n
X

kD0

 

n

k

!

2n�k .

(b)

 

n

k

! 

k

j

!

D
 

n

j

! 

n� j

k � j

!

.

(c)

 

0

m

!

C
 

1

m

!

C
 

2

m

!

C � � � C
 

n

m

!

D
 

nC 1

mC 1

!

.

(d)

  

n

k

!!

D
  

k C 1

n � 1

!!

.

(e)

  

n

k � n

!!

D
 

k � 1

k � n

!

.

(f)

  

1

k � 1

!!

C
  

2

k � 1

!!

C
  

3

k � 1

!!

C � � � C
  

n

k � 1

!!

D
  

n

k

!!

.

5. What does
�

n�1
k�1

�

C
�

n�2
k�1

�

C
�

n�3
k�1

�

C � � � C
�
k�1
k�1

�

equal? Make a conjecture and then

give a combinatorial proof.

6. Give a combinatorial proof: If x and y are real numbers and n is a nonnegative integer,

then

.x C y/n D
n
X

kD0

 

n

k

!

.x/k.y/n�k :

(As in the proof of the binomial theorem, you’ll need to invoke uniqueness of poly-

nomials.)

7. Determine the number of solutions to each of the following equations. Assume all zi

are nonnegative integers unless stated otherwise.

(a) z1 C z2 C z3 C z4 D 1.

(b) z1 C z2 C 10z3 D 8.

(c) z1 C z2 C � � � C z20 D 401 where each zi > 1.
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(d) z1 C z2 C z3 C z4 D 12 where z1; z2 > 1 and z3; z4 > 2.

(e) z1 C z2 C z3 C 3z4 C 5z5 D 7.

(f) z1 C z2 C z3 C 1
2
z4 D 11

2
.

8. After expanding .aC b C c/9 and combining like terms, how many terms are there?

9. Fix n to be a positive integer. Find, with proof, the value of k (where 0 6 k 6 n) that

maximizes
�

n
k

�

.

10. When is
�

n
k

�

even? Give as complete an answer, with proof, as you can.

11. How many k-lists .x1; x2; : : : ; xk/ are possible, such that each xi is a positive integer

and 1 6 x1 6 x2 6 � � � 6 xk 6 n? Prove your answer.

12. How many k-subsets of Œn� are possible such that no two consecutive integers appear

in the subset?

13. (uniqueness of polynomials) Let f .x/ D
Pn

kD0 akxk and g.x/ D
Pn

kD0 bkxk be

polynomials of degree n, and suppose that x0; x1; : : : ; xn are distinct real numbers for

which f .xi / D g.xi /, for all i . Prove that f D g.

Travel Notes

Though it is quite common to attach the French mathematician Blaise Pascal’s (1623–

1662) name to the triangular array of numbers mentioned in this section, the triangle and

many of its properties were known well before Pascal’s time. Mathematicians from Asia,

the Middle East, Northern Africa, and Southern Europe had studied it as early as the year

1000. See the article by Katz (1996).

The binomial coefficients provide a seemingly endless supply of interesting identities

and properties. We will see more throughout the book, especially in Section 4.1. Again, the

book by Benjamin & Quinn (2003) is an excellent reference. On a related note, there has

been considerable research in recent years into the prospect of identity-proving algorithms

for computers. This is a well-solved problem for many important classes of identities in-

cluding those involving binomial coefficients. See the book entitled A D B by Petkovšek,

Wilf & Zeilberger (1996).

The Fermat-Wiles theorem (formerly, Fermat’s last theorem) says that there are no

nontrivial solutions to xn C yn D zn in integers x, y, z, and n when n > 3. In an article

about his father (“Roger Apéry, 1916–1994: A Radical Mathematician,” The Mathematical

Intelligencer, volume 18 number 2, 1996), François Apéry relates the following anecdote.

During a mathematician’s dinner in Kingston, Canada, in 1979, the conversation

turned to Fermat’s last theorem, and Enrico Bombieri proposed a problem: to show

that the equation
 

x

n

!

C
 

y

n

!

D
 

z

n

!

where n > 3

has no nontrivial solution. Apéry left the table and came back at breakfast with the

solution n D 3, x D 10, y D 16, z D 17. Bombieri replied stiffly, “I said nontrivial.”
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2.3 Counting set partitions

We have two types of distributions left to study: distinct objects to identical recipients, and

identical objects to identical recipients. We study the former in this section and in doing so

introduce the Stirling numbers of the second kind. We shall study this important family of

numbers in more detail in Section 4.3.

Set partitions as distributions

We now consider distributions of distinct objects to identical recipients. Here is a distribu-

tion of five distinct objects to three identical recipients.

1

2
3

5

4

Here is another such distribution.

1

2

3

5 4

We can express the first distribution as
˚

f1; 3; 4g; f2; 5g
	

which is a partition of the set Œ5�

into two blocks. The second can be expressed as
˚

f1; 4g; f2g; f3; 5g
	

which is a partition of

Œ5� into three blocks. Notice that in the second distribution each recipient receives at least

one object. (Recall that we encountered partitions in Section 1.4.)

Question 72 What distribution corresponds to the partition
˚

f1; 2; 3; 4; 5g
	

?

For any set S , an r -partition of S is a set of r nonempty, disjoint sets whose union is

S . The elements of the partition are called the blocks of the partition. The 2-partition of

Œ5� corresponding to the first distribution shown in the previous paragraph consists of the

blocks f1; 3; 4g and f2; 5g. If we can do so without confusion, it is sometimes convenient

to exclude the inner braces and commas and instead write f134; 25g.
The two salient features of a partition of a set S are: (1) each element of S appears in

exactly one block of the partition, and (2) the order in which we list the blocks makes no

difference.

Stirling numbers of the second kind

To count set partitions we define S.n; k/ as the number of partitions of an n-set into k

blocks, i.e., the number of k-partitions of an n-set. As such,

S.n; k/ equals (1) the number of partitions of an n-set into k blocks; and (2) the

number of distributions of n distinct objects to k identical recipients such that each

receives at least one object.

Take note that the number of distributions of k distinct objects to n identical recipients such

that each receives at least one object is S.k; n/ not S.n; k/. The first parameter denotes the

size of the set being partitioned and the second denotes the number of blocks. We define

S.0; 0/ D 1.
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Question 73 In the context of partitions or distributions (your choice), explain why

S.0; k/ D 0 for k > 1 and S.n; 0/ D 0 for n > 1.

The numbers S.n; k/ are the Stirling numbers of the second kind.

Stirling numbers by complete enumeration

Let’s compute S.4; k/ for k D 1; 2; 3; 4 by complete enumeration. In general, for a given

positive integer n the only nonzero values of S.n; k/ are for those k satisfying 1 6 k 6 n.

First, S.4; 1/ equals the number of partitions of Œ4� into one block. The only such

partition is
˚

f1; 2; 3; 4g
	

and so S.4; 1/ D 1.

Next S.4; 2/ equals the number of partitions of Œ4� into two blocks. There are seven,

namely
˚

f1g; f2; 3; 4g
	 ˚

f2g; f1; 3; 4g
	 ˚

f3g; f1; 2; 4g
	 ˚

f4g; f1; 2; 3g
	

˚

f1; 2g; f3; 4g
	 ˚

f1; 3g; f2; 4g
	 ˚

f1; 4g; f2; 3g
	

;

so S.4; 2/ D 7.

Question 74 Use complete enumeration to show that S.4; 3/ D 6 and S.4; 4/ D 1. Also,

find S.3; k/ for k D 1; 2; 3.

Bell numbers

We define B.n/ as the number of partitions of an n-set. This means partitions of any size.

For example, B.4/ D 15 because there are 15 partitions of Œ4�, namely (using abbreviated

form)
f1234g f1; 234g f2; 134g f3; 124g f4; 123g
f12; 34g f13; 24g f14; 23g f1; 2; 34g f1; 3; 24g
f1; 4; 23g f2; 3; 14g f2; 4; 13g f3; 4; 12g f1; 2; 3; 4g:

We could have done this without complete enumeration by just adding the Stirling numbers

that we found earlier:

B.4/ D S.4; 1/C S.4; 2/C S.4; 3/C S.4; 4/ D 1C 7C 6C 1 D 15:

Question 75 Determine B.3/.

The numbers B.n/ are called the Bell numbers. Their relationship to the Stirling numbers

of the second kind is

B.n/ D
n
X

kD1

S.n; k/ for all n > 1. (2.6)

How about the formulas?

We have good formulas for calculating .n/k ,
�

n
k

�

, and
��

n
k

��

. The derivation of formulas for

S.n; k/ and B.n/ represent more of a challenge and need more advanced techniques. In

Section 3.1, we derive the formula

S.n; k/ D 1

kŠ

k
X

j D0

 

k

j

!

.�1/j .k � j /n:

In light of the relationship between the Bell and Stirling numbers shown in equation (2.6)

it is then possible to get a formula for B.n/. But in Section 4.3 we prove the alternate
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formula

B.n/ D 1

e

1
X

j D0

j n

j Š
:

This is really a remarkable formula because it expresses the integer B.n/ that has a com-

binatorial interpretation as a product of the irrational number 1
e

and an infinite series.

Question 76 Find S.7; 3/ and B.5/ using the formulas just given.

Formulas for special cases

Instead of finding one all-purpose formula for S.n; k/, let’s set our sights on finding for-

mulas for some specific values of k. These formulas are

S.n; 1/ D S.n; n/ D 1 S.n; 2/ D 2n�1 � 1 S.n; n � 1/ D
 

n

2

!

:

That S.n; 1/ D 1 and S.n; n/ D 1 should be clear since the only way to partition an n-

set into one block is to have one block consisting of the entire n-set, and the only way to

partition an n-set into n blocks is to have each element in its own block.

To calculate S.n; 2/, observe that the blocks in any 2-partition of Œn� consist of some

nonempty subset of Œn� and its complement. This means we need to count sets of the form

fA; Acg where both A and Ac are nonempty subsets of Œn�.

First let’s count the 2-lists .A; Ac/ with the same properties. We may choose A from

any of the 2n � 2 subsets of Œn� other than ; and Œn� itself. Then Ac is automatically

determined, and moreover it is guaranteed to be nonempty. Therefore, there are 2n � 2

such 2-lists.

Now, consider two 2-lists equivalent if they represent the same partition of Œn�. Each

equivalence class has size 2, corresponding to the two ways the blocks may be ordered in

the 2-list. By the equivalence principle, then, there are .2n � 2/=2 D 2n�1� 1 equivalence

classes. Therefore S.n; 2/ D 2n�1 � 1.

Question 77 Now, justify the formula S.n; n � 1/ D
�
n
2

�

.

Combinatorial proofs

Stirling’s triangle of the second kind
We first derive an identity for S.n; k/ that is similar to Pascal’s identity (Theorem 2.2.1)

for the binomial coefficients
�

n
k

�

. Examine the following illustration for the special case of

S.5; 3/. Any partition of Œ5� into three blocks must have element 5 either (1) in a block by

itself, or (2) not in a block by itself. Here are the partitionsof the first type using abbreviated

notation:
f5; 1; 234g f5; 2; 134g f5; 3; 124g f5; 4; 123g
f5; 12; 34g f5; 13; 24g f5; 14; 23g

But these are in one-to-one correspondence with the S.4; 2/ D 7 partitions of Œ4� into

two blocks: removing the block f5g from each partition results in a 2-partition of Œ4�. This

operation is a bijection; it’s illustrated in the top half of Figure 2.5.

To count the partitions of the second type, first choose one of the S.4; 3/ partitions

of Œ4� into three blocks. Next, choose one of the three blocks to contain the element 5.

This guarantees that 5 will not be in a block by itself; moreover, each selection results in
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Figure 2.5. Counting partitions of Œ5� into three blocks.

a different partition. This operation is illustrated in the bottom half of Figure 2.5. By the

product principle, there are 3 � S.4; 3/ partitions of the second type.

The sum principle implies that there are S.4; 2/C 3 � S.4; 3/ total partitions. We have

proved the identity S.5; 3/ D S.4; 2/C 3 � S.4; 3/. The following theorem uses this idea.

Theorem 2.3.1 If n > 1 and k > 1, then

S.n; k/ D S.n � 1; k � 1/C k � S.n � 1; k/:
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Combinatorial Proof: How many partitions of Œn� into k blocks are possible?

Answer 1: There are S.n; k/.

Answer 2: Condition on whether the element n is in a block by itself. If it is, then all

such partitions can be constructed by first specifying a .k � 1/-partition of Œn� 1� and then

adding the block fng. There are S.n � 1; k � 1/ such partitions.

If n is not in a block by itself, then all such partitions can be constructed by first

specifying a k-partition of Œn�1� and then putting n in one of the k blocks. By the product

principle, there are S.n � 1; k/ � k such partitions.

Finally, by the sum principle, there are S.n�1; k�1/Ck �S.n�1; k/ total partitions.

This identity allows computation of Stirling’s triangle of the second kind, a triangular

array of the nonzero numbers S.n; k/ for 0 6 k 6 n. Its first eight rows are as follows:

n# k! 0 1 2 3 4 5 6 7

0 1

1 0 1

2 0 1 1

3 0 1 3 1

4 0 1 7 6 1

5 0 1 15 25 10 1

6 0 1 31 90 65 15 1

7 0 1 63 301 350 140 21 1

(2.7)

The entry in row n and column k is S.n; k/. Its computation is similar to that in Pascal’s

triangle, but each entry equals its “northwestern” neighbor plus k times its “northern”

neighbor, where k is the column index.

Question 78 Using the identity of Theorem 2.3.1, what is the eighth (i.e., n D 8) row of

Stirling’s triangle? What are the Bell numbers B.5/ and B.6/?

Another identity involving Stirling numbers
To derive another identity, consider building a partition of Œn� into k blocks as follows. The

element n must be in some block of the partition, so condition on the number of elements

other than n in this block. If this number is j (where 0 6 j 6 n� 1) we can specify those

elements in
�

n�1
j

�

ways. For each way to do this, we can partition the remaining n� j � 1

elements into k � 1 blocks in S.n� j � 1; k� 1/ ways. By the product principle there are
�

n�1
j

�

S.n � j � 1; k � 1/ partitions corresponding to that value of j . Summing over all j

proves the following theorem.

Theorem 2.3.2 If n > 1 and k > 1, then S.n; k/ D
n�1
X

j D0

 

n � 1

j

!

S.n � j � 1; k � 1/.

Question 79 Use the theorem and Stirling’s triangle to verify that S.7; 5/ D 140.

A Bell number identity

Applying the idea of the previous theorem results in an identity for the Bell numbers.

Theorem 2.3.3 If n > 1, then B.n/ D
n�1
X

j D0

 

n � 1

j

!

B.j /.
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Figure 2.6. The 3Š onto functions derived from the partition
˚

f1g; f2; 5g; f3; 4g
	

.

Combinatorial proof: How many partitions of Œn� are there?

Answer 1: There are B.n/.

Answer 2: Arrange the partitions of Œn� into piles according to the number of elements

that are not in n’s block. Suppose that this number is j , where 0 6 j 6 n � 1. There

are
�

n�1
j

�

ways to specify those j elements, and then B.j / ways to specify a partition

of the set of those j elements. The remaining elements go in the block with n. By the

product principle there are
�

n�1
j

�

B.j / partitions in this pile. Summing over all j produces

the result.

Question 80 Use Theorem 2.3.3 to calculate B.9/.

Counting onto functions

With the Stirling numbers we can tie up a loose end from Section 2.1, namely that of a

formula for the number of onto functions. We begin with the special case of counting onto

functions Œ5� �! Œ3�.

First, partition Œ5� into three blocks in S.5; 3/ D 25 ways. Examine one such partition,

say f1; 25; 34g. Build onto functions from this partition as follows: pick a value for f .1/ in

three ways, then pick a common value for f .2/ and f .5/ in two ways, then pick a common

value for f .3/ and f .4/ in one way. The 3Š D 6 functions derived from the partition appear

in Figure 2.6. In this case, there are

S.5; 3/ � 3Š D 6 � 25 D 150

onto functions Œ5� �! Œ3�.

Question 81 How many onto functions Œ7� �! Œ4� are there?

In general, to count onto functions Œk� �! Œn�, we first partition Œk� into n blocks in

S.k; n/ ways. Then we assign a different output value to each of the n blocks in nŠ ways.

The product principle implies that there are S.k; n/ � nŠ onto functions.

Theorem 2.3.4 If k > 1 and n > 1, then the number of onto functions Œk� �! Œn� equals

S.k; n/ � nŠ.



“master” — 2010/9/20 — 12:30 — page 73 — #91
i

i

i

i

i

i

i

i

2.3. Counting set partitions 73

Back to Distributions

We can now fill in all but the last line of our table of distribution problems. The number

of distributions of k distinct objects to n distinct recipients such that each receives at least

one equals the number of onto functions Œk� �! Œn�, and this is S.k; n/ � nŠ.

There are S.k; n/ distributions of k distinct objects to n identical recipients such that

each recipient receives at least one object. If we drop the requirement that each receives

at least one object, then there are
Pn

iD1 S.k; i/ distributions. The other two answers in

the third row are trivial. For example, consider distributing k distinct objects to n identical

recipients such that each receives at most one object. If k 6 n then this is possible but

there is only one way to do it—throw each of the k balls in a different bin. If k > n then it

is not possible.

Distributions of how many objects recipients can receive

k objects to n recipients no restrictions 6 1 > 1 D 1

distinct distinct nk .n/k S.k; n/ � nŠ nŠ or 0

identical distinct
��

n
k

�� �
n
k

� ��
n

k�n

��

1 or 0

distinct identical
Pn

iD1 S.k; i/ 1 or 0 S.k; n/ 1 or 0

identical identical ? ? ? ?

Summary

In this section we studied distributions of distinct objects to identical recipients. These are

equivalent to set partitions, and the Stirling number of the second kind S.n; k/ equals the

number of partitions of an n-set into k blocks. The related Bell number B.n/ equals the

total number of partitions of an n set. We gave several examples of combinatorial proofs

involving the Stirling and Bell numbers and we also found a formula for the number of

onto functions in terms of the Stirling numbers.

Exercises

1. How many ways are there to arrange 20 different books into three piles? Into at most

three piles? Get exact numerical answers.

2. For any integer n > 2, how many onto functions Œn� �! Œn� 1� are possible? Give a

formula that doesn’t involve Stirling numbers.

3. How many onto functions Œ8� �! Œ5� are possible? Get an exact numerical answer.

4. How many onto functions Œ9� �! Œ7� have only one element mapped to 7? Get an

exact numerical answer.

5. Call a function almost onto if it “misses” exactly one element of its codomain. (That is,

f W A �! B is almost onto if there exists exactly one b 2 B for which f �1.b/ D ;.)

How many almost onto functions Œk� �! Œn� are possible?

6. How many partitions of Œ10� have exactly one block of size five? Get an exact numer-

ical answer.

7. Find the number of equivalence relations on an n-set.
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8. Give a bijective proof: If n > 1, then S.n; 2/ D 2n�1�1. Do so by creating a bijection

between the 2-partitions of Œn� and the nonempty subsets of Œn� 1�.

9. Give a bijective proof: If n > 1, then S.n; n� 1/ D
�
n
2

�

. Do so by creating a bijection

between the .n � 1/-partitions of Œn� and the 2-subsets of Œn�.

10. Let f W A �! B be a function. Prove that the set
˚

f �1.b/ W b 2 rng.f /
	

is a

partition of A. (Recall: f �1.b/ D
˚

a 2 A W f .a/ D bg is the inverse image of b.)

11. Give a combinatorial proof: If n > 1 and k > 1, then

S.n; k/ D
n�1
X

iD0

 

n� 1

i

!

S.i; k � 1/:

12. Explain how

S.n; k/ D S.n � 2; k � 2/C .2k � 1/S.n � 2; k � 1/C k2S.n � 2; k/

can be derived algebraically from the identity of Theorem 2.3.1. Then give a combi-

natorial proof.

13. Give a combinatorial proof: If n > 1 and k > 1, then

S.n; k/ D
n
X

j D1

 

n� 1

j � 1

!

S.n � j; k � 1/:

14. Here is a simple recursive C program for computing S.n; k/, based on Theorem 2.3.1.

The program assumes n; k > 0.

unsigned long S(int n, int k)

{

if (n == k) return 1;

else if (n < k) return 0;

else if (n > 0 && k == 0) return 0;

else return S(n-1,k-1) + k*S(n-1,k);

}

It works, but it is extremely wasteful. Why? Design a more efficient algorithm.

15. Derive the formula B.n/ D
Pn�1

j D0

�
n�1

j

�

B.j / algebraically from equation (2.6) and

Exercise 11.

16. Prove that the infinite series

1
X

j D0

j n

j Š
converges, for any positive integer n. Then, ex-

plain why it converges to an irrational number.

17. (linear algebra) Solve a linear system to find numbers a; b; c; d; e so that the following

polynomial equation is true:

x4 D a � .x/0 C b � .x/1 C c � .x/2 C d � .x/3 C e � .x/4:

Here, .x/4 D x.x � 1/.x � 2/.x � 3/ D x4 � 6x3 C 11x2 � 6x and .x/3 D
x.x � 1/.x � 2/ D x3 � 3x2 C 2x, and so on, where .x/0 D 1. Express the solution

a; b; c; d; e in terms of numbers studied in this section.
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18. (ordered distributions) This continues Exercise 16 of Section 2.1. Let S be an n-set.

An ordered partition of S into k blocks is a partition of S into k blocks but where

the order of the elements matters in each block. For example,
˚

.4; 1/; .3; 6; 2/; .5/
	

is an ordered partition of Œ6� into 3 blocks. It is the same as
˚

.3; 6; 2/; .5/; .4; 1/
	

but

different than
˚

.4; 1/; .3; 2; 6/; .5/
	

. Also,
˚

.4; 1/; .3; 2; 4; 6/; .5/
	

is not a ordered

partition of Œ6� because the blocks are not disjoint.

Let ˇ.k; n/ equal the number of ordered partitions of a k-set into n blocks.

(a) Explain why ˇ.k; n/ equals the number of ordered distributions of k distinct

objects to n identical recipients such that each receives at least one object.

(b) How many ordered distributions of k distinct objects to n identical recipients are

there?

(c) Prove that ˇ.k; n/ D kŠ
nŠ

�
k�1
n�1

�

.

19. (ordered distributions) Give combinatorial proofs of the following identities.

(a) ˇ.k; n/ D
�
k
n

�

.k � 1/k�n

(b) ˇ.k; n/ D ˇ.k � 1; n� 1/C .k C n� 1/ � ˇ.k � 1; n/

Travel Notes

James Stirling (1692–1770) first studied the numbers S.k; n/ though not in the context of

set partitions. Stirling’s interest was in the algebraic rather than combinatorial properties

of the numbers and we explore some of these properties in Section 4.3. The name “Stirling

numbers of the second kind” suggests that there are Stirling numbers of the first kind.

We shall also see these in Section 4.3. Stirling is well-known for the following result he

produced in 1730 known as Stirling’s approximation or Stirling’s formula:

nŠ � nne�n
p

2�n:

The Bell numbers are named in honor of Eric Temple Bell (1883–1960) who called them

the “exponential numbers.”

2.4 Counting integer partitions

The last type of distribution problem we study is that of distributing identical objects to

identical recipients. Among the 16 different types of distribution problems that we con-

sider, these are the hardest for which to obtain closed-form formulas. Such distributions

correspond to a different kind of partition than we studied in the last section, namely a par-

tition of an integer. In this section we’ll study some combinatorial properties of the integer

partition numbers. In Section 4.4 we’ll visit them again.

Integer partitions as distributions

Here is a distribution of seven identical objects to four identical recipients.
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We can record this as the multiset f1; 3; 3g. Notice that it doesn’t matter the order in which

we list the elements because both the objects and recipients are identical. Here is a distri-

bution of seven identical objects to four identical recipients such that each receives at least

one object.

This corresponds to the multiset f1; 1; 2; 3g.
In either distribution, the corresponding multiset consists of positive integers which

sum to 7. Given positive integers n and k, a partition of n into k parts is a k-multiset of

positive integers that sum to n. The elements of the multiset are the parts of the partition.

Therefore f1; 3; 3g is a partition of 7 into three parts and f1; 1; 2; 3g is a partition of 7 into

four parts. It is customary and convenient to write these as

3C 3C 1 and 3C 2C 1C 1

to emphasize that the sum of the parts equals the integer being partitioned. Generally the

parts are arranged in nonincreasing order from left to right but this is not necessary. For

example, 3C 3C 1 and 3C 1C 3 and 1C 3C 3 all represent the same partition of 7 into

three parts.

Question 82 Give five different partitions of 10 into four parts.

It is common to refer to both set partitions and integer partitions as simply partitions since

the type should be clear from context.

Integer partition numbers

To count integer partitions, we define P.n; k/ as the number of partitions of the integer n

into k parts. Based on our observations about distributions earlier,

P.n; k/ equals (1) the number of partitions of n into k parts; and (2) the number of

distributions of n identical objects to k identical recipients such that each receives at

least one object.

Note that the number of distributions of k identical objects to n identical recipients such

that each receives at least one object is P.k; n/ not P.n; k/. We define P.0; 0/ D 1.

Question 83 Using partitions or distributions (your choice), explain why P.0; k/ D 0 for

k > 1 and P.n; 0/ D 0 for n > 1.

Another method used to record a partition is as a type vector. For example, the type

vector of the partition 6C 5C 4C 3C 3 of the integer 21 is
�

10 20 32 41 51 61
�

:

In general, the type vector Œ1p1 2p2 � � � mpm � corresponds to the partition that has p1 parts

of size 1, p2 parts of size 2, and so forth. (The exponents indicate repeated addition rather

than multiplication!) The integer being partitioned is
Pm

j D1 j � pj and the number of parts

in the partition is
Pm

j D1 pj . It is customary to make the type vector only as long as the

largest part in the partition, say m, or else as long as the integer being partitioned.

Question 84 For the type vector Œ15 21 30 42 50 60 73�, what integer is being partitioned?

How many parts are in this partition?
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Integer partition numbers by complete enumeration

Let’s compute P.6; k/ for k D 1; 2; 3; 4; 5; 6. Here are all the partitions of 6 into k parts

for k D 1; 2; 3; 4:

k D 1 k D 2 k D 3 k D 4

6 5C 1 4C 1C 1 3C 1C 1C 1

4C 2 3C 2C 1 2C 2C 1C 1

3C 3 2C 2C 2

Therefore P.6; 1/ D 1, P.6; 2/ D P.6; 3/ D 3, and P.6; 4/ D 2. The only partition

of 6 into five parts is 2 C 1 C 1 C 1 C 1 and the only partition of 6 into six parts is

1C 1C 1C 1C 1C 1, so P.6; 5/ D P.6; 6/ D 1. Notice that there is no relation between

the number of partitions of the integer 6 into two parts (which is 3) and the number of

partitions of the set Œ6� into two parts (which is S.6; 2/ D 31).

Question 85 Find P.7; k/ for k D 1; 2; 3; 4; 5; 6; 7 by complete enumeration.

All partitions of an integer

We define P.n/ to be the number of partitions of the integer n. This means partitions of

any size. For example, we can find P.6/ as follows:

P.6/ D P.6; 1/C P.6; 2/C P.6; 3/C P.6; 4/CP.6; 5/C P.6; 6/

D 1C 3C 3C 2C 1C 1;

so P.6/ D 11. In general, we have

P.n/ D
n
X

kD1

P.n; k/ for all n > 1. (2.8)

Question 86 What is P.7/?

How about the formulas?

Formulas for P.n; k/ or P.n/ are much harder to come by than those for S.n; k/ or B.n/.

In Section 4.4 we will prove that P.n; 3/ equals the closest integer to n2=12. Formulas for

P.n; 4/ and P.n; 5/ are possible but more difficult to derive. Many of the known results

about P.n; k/ or P.n/ involve bounds or asymptotic formulas.

Formulas for special cases

First we observe that P.n; 1/ D P.n; n � 1/ D P.n; n/ D 1.

Question 87 Give a brief justification.

For P.n; 2/ let’s look at the partitions of n into two parts for n D 6; 7; 8; 9; 10; 11:

n D 6 n D 7 n D 8 n D 9 n D 10 n D 11

5C 1 6C 1 7C 1 8C 1 9C 1 10C 1

4C 2 5C 2 6C 2 7C 2 8C 2 9C 2

3C 3 4C 3 5C 3 6C 3 7C 3 8C 3

4C 4 5C 4 6C 4 7C 4

5C 5 6C 5
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This suggests that P.n; 2/ is about n=2. More precisely, we have

P.n; 2/ D
jn

2

k

:

Combinatorial proofs

Like the Stirling numbers of the second kind S.n; k/, the numbers P.n; k/ satisfy many

identities supported by interesting combinatorial or bijective proofs.

One Identity

Consider the partitions of n into k parts. Each partition either has (1) its smallest part equal

to 1, or else (2) its smallest part equal to some number greater than 1. By counting the

partitions of each type and adding we can prove an identity involving P.n; k/.

For example, consider the P.10; 3/ partitions of 10 into three parts. Among the four

partitions with smallest part equal to 1, we can delete one of the 1s to obtain a partition of

9 into two parts. This operation is a bijection, as follows.

8C 1C 1 �! 8C 1

7C 2C 1 �! 7C 2

6C 3C 1 �! 6C 3

5C 4C 1 �! 5C 4

There are P.9; 2/ such partitions. On the other hand, if the smallest part is at least 2, we

can subtract 1 from each part to obtain a partition of 10 � 3 D 7 into three parts. Again,

this operation is a bijection and is illustrated below.

6C 2C 2 �! 5C 1C 1

5C 3C 2 �! 4C 2C 1

4C 4C 2 �! 3C 3C 1

4C 3C 3 �! 3C 2C 2

There are P.7; 3/ such partitions. We have proved that P.10; 3/ D P.9; 2/CP.7; 3/. The

following theorem gives the general result.

Theorem 2.4.1 If n > 1 and k > 1, then P.n; k/ D P.n � 1; k � 1/C P.n � k; k/.

Combinatorial proof: How many partitions of n into k parts are there?

Answer 1: There are P.n; k/.

Answer 2: Each partition has either (1) smallest part equal to 1, or (2) smallest part at

least 2. For those of the first type, deleting a part of size 1 leaves a partition of n � 1 into

k � 1 parts. This is a bijection, so there are P.n � 1; k � 1/ such partitions. For those of

the second type, subtracting 1 from each part leaves a partition of n � k into k parts, for

no part vanishes if each originally had size at least 2. This is also a bijection, so there are

P.n� k; k/ partitions of the second type. In total there are P.n� 1; k� 1/CP.n� k; k/

partitions.

For example, we can use our earlier work to calculate

P.7; 3/ D P.6; 2/C P.4; 3/ D 3C 1 D 4

and
P.7; 4/ D P.6; 3/C P.3; 4/ D 3C 0 D 3:

Question 88 Using the identity, what is P.9; 3/? What is P.9; 4/?
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A related identity

The inspiration for another identity comes from this observation: given a partition of n

into k parts, if we subtract 1 from each part then a partition of n � k into at most k parts

remains.

For example, consider subtracting 1 from each of the P.10; 3/ D 8 partitions of 10 into

three parts, and ignore resulting “parts” of size 0. The correspondence is illustrated below.

8C 1C 1 �! 7

7C 2C 1 �! 6C 1

6C 3C 1 �! 5C 2

6C 2C 2 �! 5C 1C 1

5C 4C 1 �! 4C 3

5C 3C 2 �! 4C 2C 1

4C 4C 2 �! 3C 3C 1

4C 3C 3 �! 3C 2C 2

On the right appear partitions of 7 into at most three parts. In fact, all such partitions appear:

there are P.7; 1/C P.7; 2/C P.7; 3/ of them. We have shown that

P.10; 3/ D P.7; 1/C P.7; 2/C P.7; 3/:

Now for the theorem.

Theorem 2.4.2 If n > 1 and k > 1, then P.n; k/ D
k
X

j D1

P.n � k; j /.

Bijective proof: Define a function from the set of partitions of n into k parts and the set

of partitions of n � k into at most k parts by the operation: subtract 1 from each part and

ignore any resulting “parts” of 0. This function is a bijection, hence the two sets have the

same size by the bijection principle. The first set has size P.n; k/ and the second has size

P.n � k; 1/C P.n � k; 2/C � � � C P.n � k; k/ D
k
X

j D1

P.n � k; j /

by the sum principle.

Question 89 Compute P.9; 3/ using the theorem and previous work.

The theorem allows for calculation of a partition number triangle as shown below.

n# k! 0 1 2 3 4 5 6 7 8

0 1

1 0 1

2 0 1 1

3 0 1 1 1

4 0 1 2 1 1

5 0 1 2 2 1 1

6 0 1 3 3 2 1 1

7 0 1 3 4 3 2 1 1

8 0 1 4 5 5 3 2 1 1

The entry in row n and column k is P.n; k/.
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80 2. Distributions and Combinatorial Proofs

It is also possible to derive algebraically the identity of Theorem 2.4.1 from that of

Theorem 2.4.2. That is,

P.n; k/ � P.n � 1; k � 1/ D
kX

j D1

P.n � k; j /�
k�1X

j D1

P
�

.n � 1/� .k � 1/; j
�

D
k
X

j D1

P.n � k; j /�
k�1
X

j D1

P.n � k; j /

D P.n � k; k/;

and so P.n; k/ D P.n � 1; k � 1/C P.n � k; k/.

Using type vectors

The type vector concept can help make a bijective proof rigorous. In the following theorem,

the bijection is the function that adds a part of size 1 to the partition.

Theorem 2.4.3 If n > 1, then the number of partitions of n equals the number of partitions

of nC 1 having smallest part 1.

Bijective proof: Define A as the set of partitions of n and B as the set of partitions of nC 1

with smallest part 1. Define the function f W A �! B by

f
�
�

1p1 2p2 � � � npn
�
�

D
�

1p1C1 2p2 � � � npn
�

:

That is, f takes a partition of n and adds a part of size 1.

One-to-one: Let
�

1p1 2p2 � � � npn
�

and
�

1q1 2q2 � � � nqn
�

be partitions in A, and as-

sume that

f
�
�

1p1 2p2 � � � npn
�
�

D f
�
�

1q1 2q2 � � � nqn
�
�

:

This means that
�

1p1C1 2p2 � � � npn
�

D
�

1q1C1 2q2 � � � nqn
�

and hence (equate the expo-

nents) that pi D qi for all i . Therefore
�

1p1 2p2 � � � npn
�

D
�

1q1 2q2 � � � nqn
�

.

Onto: Let
�

1q1 2q2 � � � nqn
�

be in B . Notice that it is a partition of nC1 with at least one

part of size 1, so it can’t have any parts of size nC 1. (That is, we are justified in stopping

the type vector at nqn .) Since q1 > 1, the type vector
�

1q1�1 2q2 � � � nqn
�

corresponds to a

partition of n, so it is in A. Moreover

f
�
�

1q1�1 2q2 � � � nqn
�
�

D
�

1.q1�1/C1 2q2 � � � nqn
�

D
�

1q1 2q2 � � � nqn
�

;

so f is onto.

Back to distributions

We can now complete our table of distribution problems. There are P.k; n/ distributions

of k identical objects to n identical recipients such that each receives at least one object. If

we drop the “at least one object” requirement, then there are
Pn

iD1 P.k; i/ distributions.

The remaining two distributions in the last row are trivial.
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2.4. Counting integer partitions 81

Distributions of how many objects recipients can receive

k objects to n recipients no restrictions 6 1 > 1 D 1

distinct distinct nk .n/k S.k; n/ � nŠ nŠ or 0

identical distinct
��

n
k

�� �
n
k

� ��
n

k�n

��

1 or 0

distinct identical
Pn

iD1 S.k; i/ 1 or 0 S.k; n/ 1 or 0

identical identical
Pn

iD1 P.k; i/ 1 or 0 P.k; n/ 1 or 0

Summary

In this section we completed our classification and study of distribution problems by con-

sidering distributions of identical objects to identical recipients. These are counted with

the integer partition numbers. The number P.n; k/ equals the number of partitions of the

integer n into k parts, where such a partition is a multiset of k positive integers that sum

to n. A closed-form formula for P.n; k/ is difficult to obtain but we found formulas for

special cases and used combinatorial proofs to establish some identities.

Exercises

1. You have 40 pieces of candy to distribute among 10 children. Find the number of

ways to do this in each of the following situations. Leave your answers in standard

notation.

(a) The pieces of candy are different and each child gets at least one piece.

(b) The pieces of candy are indistinguishable and each child can get any number of

pieces.

(c) The pieces of candy are different but you distribute them among 10 indistinguish-

able paper bags.

(d) The pieces of candy are indistinguishable but you distribute them among 10 in-

distinguishable paper bags and each bag contains at least one piece.

(e) The pieces of candy are different and each child gets exactly one piece, so there

are some pieces left over.

(f) The pieces of candy are different and Frank receives four pieces.

2. Use type vectors to establish the bijection (mentioned in the proof of Theorem 2.4.1)

between partitions of n into k parts with smallest part equal to 1 and partitions of n�1

into k � 1 parts.

3. Use type vectors to establish the bijection (mentioned in the proof of Theorem 2.4.1)

between partitions of n into k parts with smallest part at least 2 and partitions of n�k

into k parts.

4. Use type vectors to establish the bijection in Theorem 2.4.2.

5. Find and prove a formula for P.n; n � 2/, for n > 3.

6. Explain how to algebraically derive the identity P.n; 2/ D
�

n
2

˘

from the identity of

Theorem 2.4.1.

7. Under what conditions on n and k is the statement P.n; k/ D P.n � 1; k � 1/ true?
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82 2. Distributions and Combinatorial Proofs

8. Give a bijective proof of the following: The number of partitions of n is equal to the

number of partitions of 2n into n parts.

9. We showed how to use Theorem 2.4.2 to prove Theorem 2.4.1. Now use Theorem

2.4.1 to prove Theorem 2.4.2.

10. Prove using type vectors: The number of partitions of n into k parts is equal to the

number of partitions of n with largest part equal to k.

11. What counting question does P.n/ � P.n � 1/ answer?

12. Prove that P.nC 2/C P.n/ > 2P.nC 1/.

13. Let Q.n; k/ denote the number of partitions of n into k distinct parts. For example,

Q.8; 3/ D 2 because the relevant partitions are 5C 2C 1 and 4C 3C 1.

(a) Derive and prove an identity for Q.n; k/, similar to that of Theorem 2.4.1 on

page 78.

(b) Compute Q.n; k/ for 0 6 n; k 6 8 using the identity of part (a).

(c) Derive and prove a formula for P.n; k/ in terms of the numbers Q.�; �/.

Travel Notes

As with many areas of mathematics, some of the first important results can be traced back

to Leonhard Euler (1707-1783). Euler’s famous 1740 proof that the number of partitions

of n into distinct parts equals the number of partitions of n into odd parts established

integer partitions as worthy of study. More importantly, however, Euler essentially invented

the concept of generating function while doing so. We will study generating functions in

Chapter 3 and they are one of the most important tools in combinatorics. We present Euler’s

proof in Section 3.4. See Dunham (1999) for an exciting account of Euler’s discovery.

Ferrer’s diagrams are useful visual representations of integer partitions. We explore

them in Section 4.4.
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C H A P T E R 3

Algebraic Tools

In this chapter we cover three important tools: inclusion-exclusion, mathematical induc-

tion, and generating functions. We call these algebraic tools because, in contrast with com-

binatorial or bijective methods of proof, they can reduce a combinatorial problem to a

relatively routine algebraic calculation.

3.1 Inclusion-exclusion

The principle of inclusion-exclusion is the big brother of set-union formulas like

jA1 [ A2j D jA1j C jA2j � jA1 \A2j
and

jA1 [ A2 [A3j D jA1j C jA2j C jA3j
� jA1 \A2j � jA1 \A3j � jA2 \A3j
C jA1 \A2 \ A3j:

In this section we show how to apply inclusion-exclusion to some classic combinato-

rial problems—counting divisors, counting so-called “derangements,” and counting onto

functions—that are difficult to handle with the tools we’ve learned so far.

Framework for inclusion-exclusion

Any use of inclusion-exclusion needs, implicitly or explicitly, two things: a universe of

objects and a set of properties. The universe of objects, denoted U , is really just a set. The

term “universe” suggests that it typically contains more than just those objects we wish

to count. The set of properties, denoted P , describes traits that the objects in the universe

may or may not possess. If there are n properties, we usually write P D fp1; p2; : : : ; png
to indicate the set of properties.

A typical application of inclusion-exclusion involves the question, “How many objects

in the universe have none of the properties?” The following examples should help you

understand both the types of questions to which inclusion-exclusion naturally applies and

also how to define the universe and properties. We will solve these examples in parallel

during the course of this section.

Example: counting integers in Œ100� not divisible by 2, 3, or 5
How many integers in Œ100� are not divisible by 2, 3, or 5?

83
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84 3. Algebraic Tools

A complete enumeration appears time-consuming. You could write the integers from 1

to 100, cross off all the multiples of 2, 3, and 5, and then count those remaining. Doable,

but perhaps not efficient.

Define the universe as Œ100�, and the properties as those traits we wish to avoid:

U WD Œ100�

d2 WD “the integer is divisible by 2”

d3 WD “the integer is divisible by 3”

d5 WD “the integer is divisible by 5.”

The number of integers not divisible by 2, 3, or 5 then equals the number of integers in U

that have none of the three properties.

Question 90 How many integers in U have property d2 (and possibly others)? How many

have both properties d3 and d5 (and possibly d2)?

Example: counting ciphers

In coding theory, a monoalphabetic substitution cipher creates a coded message by replac-

ing each character of the original message with a unique alternate character in order to

obtain the coded message. For example, if the cipher is

Original letter:A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Encoded letter:W X B D A H J K P R Y Z M L F I S Q C U E G O N V T

then MEET ME AT MIDNIGHT is encoded as MAAU MA WU MPDLPJKU. The permu-

tation .W;X;B; : : : ;V;T/ of the 26 letters A–Z does a good job of storing this cipher.

In such a cipher, it might be desirable to have no letter “fixed,” i.e., replaced by itself.

The above cipher does not have such a property because both D and M are fixed. How many

monoalphabetic substitution ciphers are possible in which no letter is fixed?

Define the universe and properties as follows:

U WD set of all possible permutations of the letters A–Z

fA WD “the permutation fixes the letter A”

fB WD “the permutation fixes the letter B”

:::

fZ WD “the permutation fixes the letter Z.”

The number of ciphers with no letters fixed then equals the number of permutations in U

that have none of the 26 properties.

Question 91 What is the size of U? How many permutations leave the letters D and M fixed

(and possibly others)?

Example: counting onto functions Œk� �! Œn�

How many onto functions Œk� �! Œn� are possible? We know that an onto function f does

not “miss” any of the elements in the codomain Œn�. That is, no matter what j 2 Œn� we

pick, there is always at least one i 2 Œk� for which f .i/ D j .
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3.1. Inclusion-exclusion 85

To count onto functions, define the universe and properties as such:

U WD set of all possible functions Œk� �! Œn�

m1 WD “the function misses element 1 2 Œn�”

m2 WD “the function misses element 2 2 Œn�”

:::

mn WD “the function misses element n 2 Œn�.”

The number of onto functions Œk� �! Œn� then equals the number of functions in U that

have none of the n properties.

Question 92 What is the size of U? How many functions miss elements 1, 2, and 3 (and

possibly others)?

In each of these examples you should make note of two things. One, the universe con-

tains more objects than we wish to count. Two, the properties describe features that the

objects we wish to count do not possess.

The functions N>.J / and ND.J /

Now that we can put counting problems in the inclusion-exclusion framework, we examine

how to answer them. The key is to be able to count the objects that possess any given subset

of properties.

In Question 90, you counted the integers in Œ100� that are divisible by 2. There are

b100
2
c D 50 of them, namely

2; 4; 6; 8; 10; 12; : : : ; 98; 100:

Some of those integers are also divisible by 3 or 5 or both, and so they satisfy additional

properties. We needn’t worry about this, though, since we only wanted to count those with

property d2 and possibly others. Similarly, there are b100
3�5 c D 6 integers that are divisible

by both 3 and 5, namely

15; 30; 45; 60; 75; 90:

Again, some are also divisible by 2 but that is of no concern.

Question 93 How many are divisible by 2 and 5? By 2, 3, and 5?

In Question 91, you counted the ciphers that leave at least the letters D and M fixed.

Your answer should have been 24Š, because with those two letters fixed any permutation of

the remaining 24 letters will possess both property fD and property fM. Of course, some of

those 24Š ciphers will fix other letters and thus possess additional properties. The crucial

point is that we have counted the ciphers that leave D and M fixed and possibly others.

Question 94 Suppose you’re given a j -subset of the letters A-Z. How many ciphers leave

at least those j letters fixed?

In Question 92, you counted the onto functions that miss at least elements 1, 2, and 3 of

Œn�. Your answer should have been .n� 3/k because any function from Œk� to f4; 5; : : : ; ng
will miss elements 1, 2, and 3. Some of those .n � 3/k functions miss other elements of

Œn�, but again we counted the functions that miss at least elements 1, 2, and 3.
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86 3. Algebraic Tools

Question 95 Suppose you’re given a j -subset of Œn�. How many functions miss at least

those j elements?

In these examples, the phrase “at least” makes a terribly important difference. If we

wanted to count the functions that miss exactly elements 1, 2, and 3, we would need to count

onto functions Œk� �! f4; 5; : : : ; ng. But that is just as hard as our original question of

counting onto functions Œk� �! Œn� ! A similar comment applies to the other two examples.

We now define counting functions to handle the “at least” and “exactly” ideas.

Definition 3.1.1 Let U be a universe of objects and let P be a set of properties that the

objects may or may not have. For any subset J of P , define the following expressions:

� N>.J / equals the number of objects in U that have the properties in J and possibly

others, and

� ND.J / equals the number of objects in U that have the properties in J and no others.

Of course, the “>” suggests “at least” and “D” suggests “exactly.”

We have already computed some values of the N> function in our three examples,

namely

N>

�

fd2g
�

D 50 counting integers example,

N>

�

ffD; fMg
�

D 24Š cipher example,

N>

�

fm1; m2; m3g
�

D .n � 3/k onto function example.

From now on, write these as N>.d2/, N>.fDfM/, and N>.m1m2m3/ to streamline the

notation. In all three examples we seek the number of objects with none of the properties,

otherwise known as ND.;/.
Question 96 What is N>.;/, in any inclusion-exclusion problem?

The idea behind the inclusion-exclusion formula

The inclusion-exclusion formula, which we now derive, is nothing more than the same

accounting trick you have seen in counting the size of a union of two or three sets using a

Venn diagram. Those formulas appeared at the beginning of this section.

To illustrate the idea, return to the example of counting the integers in Œ100� not divisi-

ble by 2, 3, or 5. Here are the subsets of Œ100� described by the three properties:

D2 WD f2; 4; 6; 8; 10; : : : ; 100g
D3 WD f3; 6; 9; 12; 15; : : : ; 99g
D5 WD f5; 10; 15; 20; 25; : : : ; 100g:

The reason for the capital Di is to distinguish the actual sets from the properties di that

describe them. Here are the sets in a Venn diagram:

D3D2

D5

the set of integers [100]
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3.1. Inclusion-exclusion 87

Our goal (remember!) is to count the integers in none of the sets, using the N>.�/ values.

Begin by including in the count everything in Œ100�, which N>.;/ does for us:

D3D2

D5 1

1

1
1

1

1

1

1

the set of integers [100]

N>.;/

The 1s indicate we have counted each integer in the eight disjoint regions of the Venn

diagram exactly once. We have included too much since our goal is to get a 1 in the region

outside the circles (which contains the integers in Œ100� that have none of the properties)

and 0s in the other seven regions (each of which contains integers that have at least one of

the properties).

To remedy this over-count, exclude the integers with property d2, with d3, and with d5.

Subtracting each of N>.d2/, N>.d3/, and N>.d5/ accomplishes this:

D3D2

D5

the set of integers [100]

1

-1

0
-2

0

0
-1

-1

N>.;/ � .N>.d2/ C N>.d3/ C N>.d5//

We’re getting there, but we have “counted �1 times” (in a net sense) those integers with

exactly two of the properties. Worse, we have “counted �2 times” those integers with all

three properties. The �2 comes from the C1 contributed by N>.;/ and the three �1s

contributed by subtracting N>.d2/, N>.d3/, and N>.d5/.

Now include the integers that share any two of the properties, which adding each of

N>.d2d3/, N>.d3d5/, and N>.d2d5/ accomplishes:

D3D2

D5

the set of integers [100]

1

0

0

0

0 0

0

1

N>.;/ � .N>.d2/ C N>.d3/ C N>.d5// C .N>.d2d3/ C N>.d3d5/ C N>.d2d5//

Make the final adjustment by subtracting N>.d2d3d5/:
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88 3. Algebraic Tools

D3D2

D5

the set of integers [100]

1

0

0

0

0 0

0

0

N>.;/�.N>.d2/ C N>.d3/ C N>.d5//C.N>.d2d3/ C N>.d3d5/ C N>.d2d5//�N>.d2d3d5/

We accomplished our goal and in doing so proved the formula

ND.;/ D N>.;/ �
�

N>.d2/CN>.d3/CN>.d5/
�

C
�

N>.d2d3/CN>.d3d5/CN>.d2d5/
�

�N>.d2d3d5/:
(3.1)

Notice that there are eight terms, one for each possible subset of P D fd2; d3; d5g. In addi-

tion, those terms corresponding to even-sized subsets are positive and those corresponding

to odd-sized subsets are negative.

Finishing the first example

To finish the example we just need the eight values of N>.�/. Some of these you have

already computed in Question 90.

N>.;/ D 100 N>.d2d3/ D
�

100

2 � 3

�

D 16

N>.d2/ D
�

100

2

�

D 50 N>.d3d5/ D
�

100

3 � 5

�

D 6

N>.d3/ D
�

100

3

�

D 33 N>.d2d5/ D
�

100

2 � 5

�

D 10

N>.d5/ D
�

100

5

�

D 20 N>.d2d3d5/ D
�

100

2 � 3 � 5

�

D 3

The answer is 100� .50C 33C 20/C .16C 6C 10/� 3 D 26.

Proof of the inclusion-exclusion formula

Before completing the other two examples, we prove an inclusion-exclusion formula which

generalizes the formula we derived with the aid of the Venn diagram. The only surprise in

the proof comes when the sum in the following Question appears.

Question 97 Find the value of

m
X

j D0

 

m

j

!

.�1/j . (Hint: binomial theorem)

Before proving the general version of the principle we address a matter of notation.

The sum that appears in the inclusion-exclusion formula is a subset sum. Writing
P

J WJ �P

means that the sum is over all possible subsets J of the set P , from the empty set to P

itself. For example, the right-hand side of equation (3.1) can be written
X

J WJ �P

.�1/jJ jN>.J /

where P D fd2; d3; d5g is the set of properties.
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3.1. Inclusion-exclusion 89

Theorem 3.1.2 (basic principle of inclusion-exclusion) Let U be a universe of objects

and let P be a set of properties that the objects may or may not have. Then the number of

objects in U with none of the properties is

ND.;/ D
X

J WJ �P

.�1/jJ jN>.J /:

Proof: Let U be a universe of objects and let P be a set of properties that the objects may

or may not have. We prove that the number of times the right-hand side of the formula

includes each object in U is 1 when the object has none of the properties and 0 when the

object has at least one property. Arrange the sum according to the size of the subset J of

the n-set P :

X

J WJ �P

.�1/jJ jN>.J / D
X

jJ jD0

.�1/0N>.J / C
X

jJ jD1

.�1/1N>.J /

C
X

jJ jD2

.�1/2N>.J / C � � � C
X

jJ jDn

.�1/nN>.J /:
(3.2)

There are
�

n
0

�

terms in the first sum,
�

n
1

�

in the second,
�

n
2

�

in the third, and so on.

First consider an object in U with none of the properties. In which terms of the formula

(3.2) does it get counted? Since it has none of the properties, the formula only counts it in

the jJ j D 0 sum, which equals N>.;/ since there is only
�
n
0

�

D 1 subset of size 0 of P .

Therefore it is counted exactly once. We are halfway there.

Now consider an object in U with at least one of the properties. Let’s say it has exactly

m of the n properties, where 1 6 m 6 n. In which terms of the formula (3.2) does it get

counted?

The answer is that it will be counted in the terms with jJ j D 0, jJ j D 1, and so on

up to jJ j D m. It will not be counted when jJ j > m because the object has exactly m

properties and no others. So when jJ j D j , where 0 6 j 6 m, there are
�

m
j

�

ways to pick

a j -subset of the m properties that the object has, and each time it is counted it contributes

.�1/j to the sum. The total contribution when jJ j D j is then
�

m
j

�

.�1/j . Therefore in a

net sense the formula counts this object

m
X

j D0

 

m

j

!

.�1/j

times. That sum equals 0 from Question 97, and this completes the proof.

Finishing the other two examples

Example: counting ciphers

To finish this question, we need N>.J / for each subset J of the 26-set of properties P .

The key is to divide the work according to the size of J .

In Question 94, you found that given any j -subset of the letters A-Z, the number of

ciphers that leave those j letters fixed is .26 � j /Š. This means

N>.J / D .26 � j /Š for all J � P with jJ j D j .
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90 3. Algebraic Tools

There are
�
26
j

�

such subsets J , and so the contribution to that part of the formula is
�

26
j

�

.�1/j .26 � j /Š. Summing this quantity over all possible values of j gives us the

answer of

ND.;/ D
26
X

j D0

 

26

j

!

.�1/j .26 � j /Š: (3.3)

This sum equals 148;362;637;348;470;135;821;287;825. Compare this with the

26Š D 403;291;461;126;605;635;584;000;000

possible ciphers in which letters are allowed to be fixed. About 37% of these have no letters

fixed:
148;362;637;348;470;135;821;287;825

403;291;461;126;605;635;584;000;000
D 0:367879 : : :

This number is essentially 1=e. See Exercise 7.

Question 98 Show that the sum (3.3) simplifies algebraically to 26Š

26
X

j D0

.�1/j

j Š
.

Example: counting onto functions Œk� �! Œn�

To answer the question of counting onto functions, again divide the work according to the

size of the subset J . In Question 94, you found that given any j -subset of Œn�, the number

of functions that miss those j elements is .n � j /k . This means

N>.J / D .n � j /k for all J � P with jJ j D j .

There are
�

n
j

�

such subsets J , and so the contribution to that part of the formula is
�

n
j

�

.�1/j .n� j /k . Summing this quantity over all possible values of j gives us the answer

ND.;/ D
n
X

j D0

 

n

j

!

.�1/j .n � j /k :

Onto functions and Stirling numbers of the second kind

In Chapter 2, we derived S.k; n/ � nŠ as a formula for the number of onto functions from

a k-set to an n-set. This was not so satisfactory because we lacked a formula for S.k; n/.

But now we have one.

Theorem 3.1.3 (number of onto functions) Let k and n be positive integers. The number

of onto functions from a k-set to an n-set is

n
X

j D0

 

n

j

!

.�1/j .n � j /k :

The formula for the Stirling number of the second kind S.n; k/ then follows immediately.

Beware that n and k have now switched places.

Theorem 3.1.4 (number of set partitions) Let n and k be nonnegative integers. The num-

ber of partitions of an n-set into k parts is

S.n; k/ D 1

kŠ

k
X

j D0

 

k

j

!

.�1/j .k � j /n:
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Proof: Since the formula of Theorem 3.1.3 only applies to positive values of n and k, we

need to check that the formula works when at least one of n and k equals 0.

When n D k D 0, the formula gives

S.0; 0/ D 1

0Š

0
X

j D0

 

0

j

!

.�1/j .0 � j /0 D 1 �
 

0

0

!

.�1/000 D 1

with the convention 00 D 1. This is correct since the number of partitions of the empty set

into zero parts equals 1 (the empty partition). The other two cases are left for you to check

in the following Question.

Question 99 For n > 1, what value should S.n; 0/ take? Does the formula agree? For

k > 1, what value should S.0; k/ take? Does the formula agree?

Another example and a warning

The problem of counting ciphers is more commonly known as the problem of derange-

ments: How many permutations of Œn� have no fixed points? (A fixed point of a function f

is a value i for which f .i/ D i .) It is also known as the hat-check problem: in how many

ways can the hats of n people be re-distributed so that each person receives exactly one hat

but no person receives their own hat? The cipher problem is equivalent to either of these

problems with n D 26.

Consider modifying the hat-check problem by removing the requirement that each per-

son receives exactly one hat. That is, allow any person to receive any number of hats but

still require that no person receives their own hat. This involves counting functions rather

than permutations, and an application of inclusion-exclusion might use

U WD set of all possible functions Œn� �! Œn�

fi WD “the function fixes element i”, for all i 2 Œn�.

As usual we want ND.;/. For any j -subset J of the properties it follows that N>.J / D
nn�j . This means that the answer is

ND.;/ D
n
X

j D0

 

n

j

!

.�1/j nn�j :

This is correct but if we apply the binomial theorem to this sum we get

n
X

j D0

 

n

j

!

.�1/j nn�j D .�1C n/n D .n � 1/n:

There should be a simple explanation for this simple answer, and there is: for every i 2 Œn�,

there are n � 1 choices (anything except i ) for the value of f .i/.

This problem warns us to seek the simplest solutions first before trying more compli-

cated methods!

The more general formula

The basic principle of inclusion-exclusion applies to counting objects that satisfy none of

the properties. How might we count the objects that satisfy some of the properties?
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92 3. Algebraic Tools

Theorem 3.1.5 (general principle of inclusion-exclusion) Let U be a universe of objects,

and let P D fp1; p2; : : : ; png be a set of properties that the objects may or may not have.

If S is any subset of P , then the number of objects in U with the properties in S and no

others is

ND.S/ D
X

J WS�J �P

.�1/jJ j�jS jN>.J /:

In this case, the sum is over all subsets of P that contain the elements of S . The proof of

the general principle is in Exercise 16 and uses essentially the same technique as the proof

of the basic principle.

Example: counting divisors again

How many integers in Œ100� are divisible by 2 but not by 3 or 5?

This question still has U D Œ100� and P D fd2; d3; d5g as defined earlier, but now we

seek ND.d2/. So we apply the formula in the theorem with S D fd2g. The sum will then

be over the four subsets

fd2g; fd2; d3g; fd2; d5g; fd2; d3; d5g:

The formula gives

ND.d2/ D N>.d2/ �
�

N>.d2d3/CN>.d2d5/
�

CN>.d2d3d5/:

We have already computed these values. The answer is 50 � .16C 10/C 3 D 27.

Question 100 How many integers in Œ100� are divisible by 3 but not by 2 or 5? How many

are divisible by 2 and 3 but not by 5?

Summary

Inclusion-exclusion is tailor-made for counting problems that fit the universe/properties

framework. The properties generally describe “bad” traits, and the inclusion-exclusion for-

mula counts those objects with none of the bad traits. In applying the formula, some prob-

lems allow shortcuts because the value of N>.J / only depends on the size of J . This was

the case in both the cipher and onto function examples. Other problems, such as the one

involving counting integers not divisible by 2, 3, or 5, do not allow such shortcuts. In that

example we had to compute each value of N>.J / separately.

Exercises

1. How many integers in Œ10000� are not divisible by 2, 3, or 5? How many are not

divisible by 2, 3, 5, or 13?

2. How many integers in Œ100� are not divisible by 4, 6 or 7?

3. Use inclusion-exclusion to prove the formula

jA1 [A2 [ A3j D jA1j C jA2j C jA3j
� jA1A2j � jA1A3j � jA2A3j
C jA1A2A3j:

(The notation A1A2 means A1 \A2.)
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4. Find the number of 13-card hands drawn from a 52-card deck that...

(a) have at least one card in each suit.

(b) are void in exactly one suit. (“Void in spades” means there are no spades in the

hand.)

5. After a day of skiing a family of six washes all of their ski-wear including their gloves.

The next day, each family member grabs two gloves from the pile.

(a) Assume that everyone grabs one left-hand and one right-hand glove. In how many

ways can they do this so that no one has both of their own gloves?

(b) Answer part (a) assuming instead that each family member grabs any two gloves.

6. Answer the hat-check problem (i.e., the problem of derangements) for general n. This

number is known as Dn.

7. Let Dn be as defined in the previous exercise.

(a) Calculate lim
n�!1

Dn

nŠ
. Interpret your result.

(b) Prove that for any n, Dn equals the closest integer to nŠ=e.

8. In how many ways can you distribute 20 identical objects to 10 distinct recipients so

that each recipient receives at most five objects? How many ways if each receives at

least one but at most five objects?

9. Generalize the previous problem: In how many ways can you distribute k identical

objects to n distinct recipients so that each recipient receives at most r objects?

10. How many functions Œ6� �! Œ7� have at most two arrows pointing to each element of

the codomain?

11. When k < n, what is the value of the sum

n
X

j D0

 

n

j

!

.�1/j .n � j /k? Explain combi-

natorially.

12. Derive an identity for
�

n
k

�

via inclusion-exclusion by counting the k-multisets of Œn� in

which each element of Œn� appears at most once. Use pi D “element i appears more

than once in the multiset” as the i -th property, for 1 6 i 6 n.

13. Suppose that in an inclusion-exclusion problem, there exists a function f such that

N>.J / D f
�

jJ j
�

for any subset J of P . Prove:

ND.;/ D
n
X

j D0

 

n

j

!

.�1/j f .j /:

14. Give a combinatorial proof of the identity
Pn

kD0

�
n
j

�

.�1/j D 0 wherein the left side

is computed using inclusion-exclusion.

15. Prove combinatorially, using inclusion-exclusion, the identity that results from letting

x D �1 and y D 2 in the binomial theorem (Theorem 2.2.2, p. 63).

16. Prove Theorem 3.1.5 by adapting the technique we used to prove Theorem 3.1.2.
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94 3. Algebraic Tools

17. A taxi drives from the intersection labeled A to the intersection labeled B in the grid

of streets shown below. The driver only drives north (up) or east (right).

A

B

congested
intersection

=

Traffic reports indicate that there is heavy congestion at the intersections identified.

How many routes from A to B can the driver take that...

(a) avoid all congested intersections?

(b) pass through at most one congested intersection?

18. A 4-by-4 word search puzzle is a 4-by-4 array of capital letters. How many 4-by-

4 word searches have the word MATH appearing at least once either horizontally,

vertically, or diagonally? Here are examples of four different such puzzles:

F H M A M A T H M M M M M A T H

M A T H A T H M G A A P M A T H

G Z Z Q T S M E Z R T Y M A T H

F A Y U H E E N K L H H M A T P

Assume MATH appears left-to-right, top-to-bottom, or top-left-to-bottom-right only.

Travel Notes

Several 19th century mathematicians have been associated with discovering the inclusion-

exclusion formula, including Daniel da Silva, Abraham de Moivre, and J. J. Sylvester, but

it was da Silva who first published it in 1854.

The hardest part about inclusion-exclusion is the notation. The use of N> and ND is

fairly common but not universal. The use of the subset sum
P

J WJ �P avoids undue use of

“� � � ” in something like

ND.;/ D N>.;/ �
X

i

N>.pi /C
X

i 6Dj

N>.pi pj / �
X

i;j;k different

N>.pi pj pk/

C � � � C .�1/nN>.p1p2 � � �pn/:

In Sections 8.5 and 8.6, we study a powerful generalization of inclusion-exclusion

called the principle of Möbius inversion. In the foundational paper concerning Möbius

inversion, Rota (1964) begins by declaring that “One of the most useful principles of

enumeration in discrete probability and combinatorial theory is the celebrated principle

of inclusion-exclusion. When skillfully applied, this principle has yielded the solution to

many a combinatorial problem.”

3.2 Mathematical induction

The reader familiar with induction can either omit this section or skim the examples.

In this section we highlight how to use induction to complement our combinatorial

proof techniques. Sometimes you might first discover the truth of an identity using induc-

tion, and then later realize a combinatorial proof. Other times, induction ends up being the

only thing that works.
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The principle of mathematical induction

The principle of mathematical induction provides a sufficient condition to guarantee the

truth of a statement that depends on an integer.

Theorem 3.2.1 (mathematical induction) Let n0 be an integer, and suppose S.n/ is a

statement involving an integer n. If the following two conditions are true, then S.n/ is true

for all n > n0.

� Base case: S.n0/ is true.

� Inductive step: If k is an integer, k > n0, and S.k/ is true, then S.k C 1/ is true.

The proof appears at the end of this section.

To use mathematical induction you must verify the base case and the inductive step of

the theorem. The base case must involve a demonstration that S.n0/ is true. The inductive

step is an if-then proof in itself. You must (1) assume k is an integer, k > n0, (2) assume

that S.k/ is true, and then (3) prove that S.k C 1/ is true.

It is step (3) where all the work and creativity occur. The truth of S.k/ in step (2)

is known as the inductive hypothesis. Every proof by induction must use the inductive

hypothesis (abbreviated IHYP in the examples to follow) at some point. If it doesn’t then

it’s mostly likely an incorrect proof.

Example #1: partial geometric series

In the sections on generating functions soon to follow we make good use of the identity

1C x C x2 C � � � C xn D 1 � xnC1

1 � x

which holds for any real number x 6D 1 and for any integer n > 0. You have used this

formula in calculus to find the partial sum of a geometric series.

Question 101 Compute 1 � 2C 4 � 8C 16 � 32C 64 � 128 using the formula.

We’ll prove the theorem by induction on n.

Theorem 3.2.2 If x is a real number, x 6D 1, then for all n > 0,

n
X

j D0

xj D 1 � xnC1

1 � x
:

Proof by induction on n: Assume that x is a real number, x 6D 1. For n > 0, define S.n/

to be the statement

S.n/:

n
X

j D0

xj D 1 � xnC1

1 � x
:

When n D 0, the left-hand side of the equation S.0/ is
P0

j D0 xj D x0 D 1 since x0

is defined to be 1 for all real numbers x (including 0). The right-hand side of S.0/ is
1�x0C1

1�x
D 1�x

1�x
D 1 since x 6D 1. They are equal, so S.0/ is true.
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96 3. Algebraic Tools

Now assume k is an integer, k > 0, and that S.k/ is true, namely

IHYP:

k
X

j D0

xj D 1 � xkC1

1 � x
:

We must prove that S.k C 1/ is true, namely

kC1
X

j D0

xj D 1 � xkC2

1 � x
:

To do so, start with the left-hand side:

kC1
X

j D0

xj D

0

@

k
X

j D0

xj

1

AC xkC1 peel off last term

D 1 � xkC1

1 � x
C xkC1 use IHYP

D 1 � xkC1 C xkC1.1 � x/

1 � x
common denominator

D 1 � xkC1 C xkC1 � xkC2

1 � x

D 1 � xkC2

1 � x
:

Therefore S.k C 1/ is true. Therefore S.n/ is true for n > 0.

Example #2: proving an inequality

It appears that the inequality
n
X

j D1

j Š < .nC 1/Š

might be true for any integer n > 1 because

1Š D 1 < 2 D 2Š

1ŠC 2Š D 3 < 6 D 3Š

1ŠC 2ŠC 3Š D 9 < 24 D 4Š

1ŠC 2ŠC 3ŠC 4Š D 33 < 120 D 5Š

1ŠC 2ŠC 3ŠC 4ŠC 5Š D 153 < 720 D 6Š

(3.4)

is a promising start.

Define S.n/ to be the statement

S.n/:

n
X

j D1

j Š < .nC 1/Š:
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3.2. Mathematical induction 97

To prove by induction, note that the first line of inequalities (3.4) shows that S.1/ is true.

Now assume that k is an integer, k > 1, and that S.k/ is true, namely

IHYP:

k
X

j D1

j Š < .k C 1/Š:

We must show that
PkC1

j D1 j Š < .k C 2/Š. The following calculations do the job:

kC1X

j D1

j Š D

0

@

kX

j D1

j Š

1

AC .k C 1/Š peel off last term

< .k C 1/ŠC .k C 1/Š by IHYP

D 2.k C 1/Š

< .k C 2/.k C 1/Š 2 < k C 2 since k > 1

D .k C 2/Š :

Therefore S.k C 1/ is true, so S.n/ is true for all n > 1.

Example #3: solving a recurrence relation

An example of a recurrence relation is

a0 D 1

an D 2an�1 C n � 1 for n > 1.
(3.5)

It governs the iterative computation of the numbers a0; a1; a2; a3; : : :. The value a0 D 1 is

the initial condition, and then to get the successive values a1; a2; a3; : : : you just apply the

rule an D 2an�1 C n� 1 repeatedly:

a0 D 1

a1 D 2a0 C 1 � 1 D 2.1/C 0 D 2

a2 D 2a1 C 2 � 1 D 2.2/C 1 D 5

a3 D 2a2 C 3 � 1 D 2.5/C 2 D 12

:::

Question 102 What is a6?

To find a100 and a1000 and so forth, we would like a formula that allows us to jump right

to a1000 without computing the previous terms. Compute a few more terms and look for a

pattern:

n 0 1 2 3 4 5 6 7

an 1 2 5 12 27 58 121 248
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98 3. Algebraic Tools

They seem to have something to do with powers of 2, specifically

a0 D 1 D 21 � 1

a1 D 2 D 22 � 2

a2 D 5 D 23 � 3

a3 D 12 D 24 � 4

a4 D 27 D 25 � 5

a5 D 58 D 26 � 6

a6 D 121D 27 � 7

a7 D 248D 28 � 8:

Our guess is that an D 2nC1 � n� 1 holds for all n > 0.

To prove this by induction on n, first verify the formula when n D 0. The formula says

a0 D 20C1 � 0 � 1 D 1. The recurrence defines a0 D 1, so it is correct in this case.

Now assume k is an integer, k > 0, and that ak D 2kC1�k�1; this is IHYP. We must

prove that akC1 D 2kC2 � .k C 1/� 1, or equivalently that akC1 D 2kC2 � k � 2. Here it

is:

akC1 D 2ak C k by the recurrence relation

D 2.2kC1 � k � 1/C k by IHYP

D 2kC2 � 2k � 2C k

D 2kC2 � k � 2:

This proves that S.k C 1/ is true. Therefore an D 2nC1 � n � 1 is true for all n > 0.

Example #4: solving a counting problem

Here’s a straightforward yet typical example of how you might use induction in combina-

torics. You are trying to count the partitions of Œn� into two blocks but don’t see how to

jump directly to a formula. Instead, you define pn to be the number of partitions of Œn� into

two blocks, for n > 2. Using complete enumeration, you find p2 D 1, p3 D 3, p4 D 7,

and p5 D 15. For example, the partitions of Œ3� into two blocks are

˚

f1g; f2; 3g
	

;
˚

f2g; f1; 3g
	

; and
˚

f3g; f1; 2g
	

:

Then you discover a combinatorial proof of the identity pn D 2pn�1 C 1, for n > 3.

Question 103 Give the combinatorial proof.

Starting with p2 D 1, you do some computation:

p2 D 1

p3 D 2p2 C 1 D 3

p4 D 2p3 C 1 D 7

p5 D 2p4 C 1 D 15

p6 D 2p5 C 1 D 31

p7 D 2p6 C 1 D 63:
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3.2. Mathematical induction 99

The first four values agree with those you found by complete enumeration—good. Also,

the pattern looks pretty clear:

pn D 2n�1 � 1 for n > 2.

In other words, you need to prove that the numbers defined by the recurrence relation

p2 D 1

pn D 2pn�1 C 1 for n > 3

are really just the numbers pn D 2n�1 � 1, for n > 2.

Question 104 Give a proof by induction, like that of Example #3.

Strong mathematical induction

When using induction, sometimes the truth of S.k/ alone is not strong enough to imply the

truth of S.kC 1/. In such cases we can try strong induction. In the induction hypothesis of

strong induction, we assume the truth of S.j / for all j between the base value n0 and the

arbitrary integer k.

Theorem 3.2.3 (strong mathematical induction) Let n0 and n1 be integers, n0 6 n1,

and suppose that S.n/ is a statement involving the integer n. If the following two conditions

are true, then S.n/ is true for all n > n0:

� Base case(s): S.n0/; : : : ; S.n1/ are true.

� Inductive step: If k is an integer, k > n1, and S.j / is true for all j satisfying n0 6

j 6 k, then S.k C 1/ is true.

Notice that it may be necessary to verify that more than one statement is true in the base

case. Since the assumptions are stronger than those of Theorem 3.2.1, essentially the same

proof works. (The proof of Theorem 3.2.1 appears at the end of the section.)

Example #5: bounding terms of a recurrence relation

Consider another recurrence relation:

L0 D 2

L1 D 1

Ln D Ln�1 C Ln�2 for n > 2.

(3.6)

This means L2 D L1 C L0 D 3 and L3 D L2 C L1 D 4 and so forth:

n 0 1 2 3 4 5 6 7 � � �
Ln 2 1 3 4 7 11 18 29 � � �

This is the well-known sequence of Lucas numbers which we will revisit a couple of times

in the text. A formula for Ln is not obvious. Later in this chapter we develop a systematic

technique that allows us to derive a formula.

But if at first you don’t succeed then lower your standards: sometimes just having an

upper bound on the n-th term of a sequence is a useful thing. In this case, one easy upper

bound is Ln < 2n which appears to hold for all n > 1. At least it is true for 1 6 n 6 7:
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100 3. Algebraic Tools

n 0 1 2 3 4 5 6 7

Ln 2 1 3 4 7 11 18 29

2n 1 2 4 8 16 32 64 128

(In fact the bound appears too generous. Exercise 9 asks you to prove a tighter bound.)

To prove the upper bound, define the statement

S.n/: Ln < 2n:

Our proof is by strong induction. When n D 1, we have L1 D 1 by definition. Also,

21 D 2. It follows that L1 < 21 and so S.1/ is true. When n D 2, we have L2 D 3 and

22 D 4. It follows that L2 < 22 and so S.2/ is true. (In applying Theorem 3.2.3 we chose

n0 D 1 and n1 D 2. The base case(s) portion requires us to show that S.1/ and S.2/ are

true, which we just did.)

Now assume that k is an integer, k > 2, and that S.j / is true for all j satisfying

1 6 j 6 k, namely

IHYP: Lj < 2j for all j with 1 6 j 6 k.

We must show that S.k C 1/ is true, namely LkC1 < 2kC1. Now,

LkC1 D Lk CLk�1 by the recurrence relation

< 2k C 2k�1 use IHYP

D 2k�1.2C 1/

D 2k�1 � 3

< 2k�1 � 22

D 2kC1:

Therefore LkC1 < 2kC1, and so S.k C 1/ is true. Therefore Ln < 2n for all integers

n > 1.

It is very important to understand why we could apply the inductive hypothesis to both

Lk and Lk�1 in the second line of the calculation above. The reason is that because k is

at least 2, then k � 1 is at least 1. Since the induction hypothesis assumes that S.j / is true

for all j satisfying 1 6 j 6 k, we are safe in using both Lk < 2k and Lk�1 < 2k�1.

Question 105 What happens if you try to prove Ln < 2n for all n > 0 and do not verify

the base cases?

Proof of the principle of mathematical induction

The proof of Theorem 3.2.1 uses an axiom called the well-ordering principle.

Axiom 3.2.4 (the well-ordering principle) A nonempty subset of integers that is bounded

below contains a least element.

“Bounded below” means that there is some number L such that L 6 x for every integer

x in the set. The well-ordering principle does not apply to, say, the set of even integers

f0;˙2;˙4; : : :g because it is not bounded below.
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3.2. Mathematical induction 101

Proof of Theorem 3.2.1: We prove by contradiction. Assume that the two conditions of

the theorem are true and yet it is not the case that S.n/ is true for all n > n0. Consider the

set of integers

fn0; n0 C 1; n0 C 2; : : :g:

There is at least one integer in this set for which the statement S is false. Collect all such

integers into a set called F , and notice that each element of F is at least n0 C 1. This is

because S.n0/ is true by the base case assumption.

This set F of integers is then nonempty and bounded below, and so the well-ordering

principle tells us that it has a least element. Call it m, and notice that m > n0 C 1. Then

S.m/ is certainly false but S.m � 1/ must be true. This is because m is the least integer in

fn0; n0 C 1; n0 C 2; : : :g that makes the statement false, and also because m� 1 > n0.

But the hypothesis of the theorem says then that S
�

.m � 1/ C 1
�

D S.m/ is true,

contradicting the fact that S.m/ is false! Therefore S.n/ is true for all n > n0.

Summary

Mathematical induction is a technique for proving a statement S.n/ that depends on an

integer n. It requires two parts: verification of the base case and a proof of the inductive

step. In the inductive step we prove that the truth of S.k/ implies the truth of S.k C 1/.

Sometimes the truth of S.k/ alone does not imply the truth of S.kC1/, and so the principle

of strong mathematical induction might work. In its inductive step, one assumes the truth

of S.j / for all values of j satisfying j 6 k and then proves that S.k C 1/ is true.

Exercises

1. (a) Prove: for n > 0, 3n � 1 is divisible by 2.

(b) Prove: for n > 0, 4n � 1 is divisible by 3.

(c) Find a general theorem and prove it.

2. Let a and b be unequal integers. Prove: for n > 0, an � bn is divisible by a � b.

3. Prove: for n > 2,

n
Y

j D2

�

1 � 1

j 2

�

D nC 1

2n
. The product notation means

n
Y

j D2

�

1 � 1

j 2

�

D
�

1 � 1

22

��

1 � 1

32

��

1 � 1

42

�

� � �
�

1 � 1

n2

�

:

4. Discover and prove formulas for each of the following products.

(a)

n
Y

j D1

�

1C 1

j

�

(b)

n
Y

j D2

�

1 � 1

j

�

5. Discover and prove a formula for the sum

n
X

j D1

.�1/j j 2.
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6. Conjecture and prove a formula for

n
X

iD1

i
X

j D1

j . (You can call this the “Twelve Days of

Christmas” formula because when n D 12 the sum equals the total number of gifts

given in the song.)

7. Give a combinatorial proof: for n > 1,
Pn

j D1 j Š < .nC 1/Š.

Do so by asking a question and then performing a deliberate under- or over-count with

one of the answers.

8. The work in (3.4), page 96, suggests that
Pn

j D1 j Š 6
1
2
.nC 1/Š might be true.

(a) Prove this sharper inequality by induction.

(b) Give a combinatorial proof.

9. For the recurrence relation shown in (3.6), page 99, we proved Ln < 2n for n > 1.

(a) Prove the tighter inequality Ln 6 1:7n. At what value of n should you start the

induction?

(b) What is so special about the number 1.7? Adjust your work in part (a) to create

the tightest bound that you can.

10. Define a recurrence relation by a0 D a1 D a2 D 1, and an D an�1 C an�2 C an�3

for n > 3. Prove: an 6 1:9n for all n > 0. Also, can you prove a tighter bound?

11. Define a0 D 1 and for n > 1, define an D nan�1 C 1. Prove: For n > 0, an D
n
X

j D0

.n/j .

12. Prove: If n is an integer, n > 2, then either n is prime or else can be factored into a

product of primes. (This is the fundamental theorem of arithmetic.)

13. Assume the truth of the following statement: if A and B are disjoint, finite sets,

then jA [ Bj D jAj C jBj. Prove the following by induction on n: for n > 2, if

A1; A2; : : : ; An are finite, pairwise disjoint sets, then

ˇ
ˇ
ˇ
ˇ
ˇ

n
[

iD1

Ai

ˇ
ˇ
ˇ
ˇ
ˇ
D

n
X

iD1

jAi j:

14. Let n > 1. Prove that any 2n � 2n checkerboard with any one square removed can be

completely tiled with L-shaped tiles. (The tiles take up three adjacent squares of the

checkerboard in an L shape.)

3.3 Using generating functions, part I

Our job for the remainder of this chapter is to introduce and use generating functions to

solve combinatorial problems. Generating functions exploit algebra to mimic calculations

involving the sum and product principles. The amount of information that can be squeezed

out of a generating function is surprisingly great. Their use often leads to new insights and

clever proofs.
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The magic of algebra

In how many ways can a team score a total of six points in basketball? (In basketball,

any single shot is worth either one, two, or three points. And we’re only interested in the

number of each type of shot made, not the order in which they were made.)

Admittedly this is a problem small enough to solve by brute force because six is not a

large number. In fact, we just need to count the partitions of 6 into parts of size at most 3.

There are seven, namely

3C 3 2C 2C 2 1C 1C 1C 1C 1C 1

3C 2C 1 2C 2C 1C 1

3C 1C 1C 1 2C 1C 1C 1C 1:

But this becomes unreasonable to do when we ask the same question of 98 points—a more

realistic total for an NBA game—instead of six points.

Question 106 How many ways are there to score seven points?

Generating functions can answer both the six-point question and the 98-point question

with the same effort, and therein lies the advantage. Let’s tackle the six-point question first.

� In scoring six points, the contribution from one-point shots to that score is

0 pts˚ 1 pt˚ 2 pts˚ 3 pts˚ 4 pts˚ 5 pts˚ 6 pts

where ˚ means exclusive-or. Symbolize this algebraically as

x0 C x1 C x2 C x3 C x4 C x5 C x6

where the ˚ signs have been replaced by ordinary addition and where the total con-

tribution appears in the exponents.

� The contribution from two-point shots to the score of six points is

0 pts˚ 2 pts˚ 4 pts˚ 6 pts:

Symbolize this algebraically as x0 C x2 C x4 C x6.

� Finally, the contribution from three-point shots is

0 pts˚ 3 pts˚ 6 pts;

which we symbolize algebraically as x0 C x3 C x6.

Multiply these three algebraic expressions together in a product-principle-type of calcula-

tion to get the generating function

.1C x C x2 C x3 C x4 C x5 C x6/
„ ƒ‚ …

contribution from 1-pt shots

.1C x2 C x4 C x6/
„ ƒ‚ …

...from 2-pt shots

.1C x3 C x6/:
„ ƒ‚ …

...from 3-pt shots

(3.7)

Then distribute and gather like terms (which is best done with a symbolic manipulator like

Maple) to rewrite it as

1C x C 2x2C 3x3 C 4x4 C 5x5 C 7x6C 7x7 C 8x8 C 8x9

C 8x10 C 7x11 C 7x12 C 5x13 C 4x14C 3x15 C 2x16 C x17 C x18:
(3.8)

To answer the original question, we just find the coefficient of the x6 term, which is 7.
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.x0 C x C x2 C x3 C x4 C x5 C x6/.x0 C x2 C x4 C x6/.x0 C x3 C x6/

D x0C0C0 C x1C0C0 C x2C0C0 C x3C0C0 C x4C0C0 C x5C0C0 C x6C0C0

C x0C2C0 C x1C2C0 C x2C2C0 C x3C2C0 C x4C2C0 C x5C2C0 C x6C2C0

C x0C4C0 C x1C4C0 C x2C4C0 C x3C4C0 C x4C4C0 C x5C4C0 C x6C4C0

C x0C6C0 C x1C6C0 C x2C6C0 C x3C6C0 C x4C6C0 C x5C6C0 C x6C6C0

C x0C0C3 C x1C0C3 C x2C0C3 C x3C0C3 C x4C0C3 C x5C0C3 C x6C0C3

C x0C2C3 C x1C2C3 C x2C2C3 C x3C2C3 C x4C2C3 C x5C2C3 C x6C2C3

C x0C4C3 C x1C4C3 C x2C4C3 C x3C4C3 C x4C4C3 C x5C4C3 C x6C4C3

C x0C6C3 C x1C6C3 C x2C6C3 C x3C6C3 C x4C6C3 C x5C6C3 C x6C6C3

C x0C0C6 C x1C0C6 C x2C0C6 C x3C0C6 C x4C0C6 C x5C0C6 C x6C0C6

C x0C2C6 C x1C2C6 C x2C2C6 C x3C2C6 C x4C2C6 C x5C2C6 C x6C2C6

C x0C4C6 C x1C4C6 C x2C4C6 C x3C4C6 C x4C4C6 C x5C4C6 C x6C4C6

C x0C6C6 C x1C6C6 C x2C6C6 C x3C6C6 C x4C6C6 C x5C6C6 C x6C6C6

D x0 C x1 C x2 C x3 C x4 C x5 C x6 C x2 C x3 C x4 C x5 C x6 C x7 C x8

C x4 C x5 C x6 C x7 C x8 C x9 C x10 C x6 C x7 C x8 C x9 C x10 C x11 C x12

C x3 C x4 C x5 C x6 C x7 C x8 C x9 C x5 C x6 C x7 C x8 C x9 C x10 C x11

C x7 C x8 C x9 C x10 C x11 C x12 C x13

C x9 C x10 C x11 C x12 C x13 C x14 C x15

C x6 C x7 C x8 C x9 C x10 C x11 C x12

C x8 C x9 C x10 C x11 C x12 C x13 C x14

C x10 C x11 C x12 C x13 C x14 C x15 C x16

C x12 C x13 C x14 C x15 C x16 C x17 C x18

D 1C x C 2x2C 3x3 C 4x4 C 5x5 C 7x6C 7x7 C 8x8 C 8x9

C 8x10 C 7x11 C 7x12 C 5x13 C 4x14 C 3x15 C 2x16 C x17 C x18:

Figure 3.1. The 84 terms in the expanded generating function.

Why does this work? Figure 3.1 reveals the hidden algebraic details. There are 7 �4 �3 D
84 terms when the generating function (3.7) is multiplied out, and each appears before

simplification in the form xaCbCc where a is the total contribution from one-point shots, b

from two-point shots, and c from three-point shots. After simplifying the exponents, each

exponent stores the point totals. Then combining like terms—the key step!—makes the

coefficient of x6 equal the number of ways the team can score exactly k points.

Answering other questions

The generating function (3.8) actually answers more than just the original question. In how

many ways can a team score a total of five points? The answer is the coefficient of x5,

which is 5. How about three points? The answer is the coefficient of x3, which is 3.

Although the coefficient of x10 is 8, there are not eight ways to score 10 points in
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basketball. This is because the generating function

.1C x C x2 C x3 C x4 C x5 C x6/.1C x2 C x4 C x6/.1C x3 C x6/

limits the contribution from each type of shot to be at most six points. So eight is the answer

to the question, In how many ways can a team score a total of 10 points if they make at

most six one-point shots, at most three two-point shots, and at most two three-point shots?

Question 107 Does the coefficient of x7 in the generating function equal the number of

ways that a team can score seven points or does the same issue arise?

To answer the question of how many ways a team can score a total of 10 points, we

would find the coefficient of x10 in

.1C x C x2 C � � � C x10/.1C x2 C x4 C � � � C x10/.1C x3 C x6 C x9/:

Using Maple, the answer is 14. And to go back to our original question of how many ways

the team can score a total of 98 points, we need to find the coefficient of x98 in

.1C x C x2 C � � � C x98/.1C x2 C x4 C � � � C x98/.1C x3 C x6 C � � � C x96/:

With the help of Maple this is 850.

Generating functions are capable of answering many questions at once. Might there be

one generating function that answers the question of how many ways can a team score a

total of k points for any value of k? There is:

.1C x C x2 C x3 C � � � /.1C x2 C x4 C x6 C � � � /.1C x3 C x6 C x9 C � � � /: (3.9)

The answer to the question equals the coefficient of xk in the above generating function.

This last generating function should raise some eyebrows. How can we make sense of a

product where each term is an infinite sum? Is it really true that the six-point and 98-point

questions can be answered with the same effort? Stay tuned.

The magic of calculus

Each term of the product shown in (3.9) is a power series. The well-known geometric series

formula from calculus is

1

1 � x
D 1C x C x2 C x3 C � � � for jxj < 1.

If you replace x by x2 you get

1

1 � x2
D 1C x2 C .x2/2 C .x2/3 C � � �

D 1C x2 C x4 C x6 C � � �

and if you replace x by x3 you get

1

1 � x3
D 1C x3 C .x3/2 C .x3/3 C � � �

D 1C x3 C x6 C x9 C � � � :
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Thus there is a concise way to write the generating function (3.9) for the number of ways

that a team can score any number of points:

1

.1 � x/.1 � x2/.1 � x3/
:

Is such an expression a satisfactory answer to the original question? That is, if you ask

how many ways that a basketball team can score a total of k points and someone tells you

that the answer is the coefficient of xk in the given generating function, then is that a good

answer? This section and the next should convince you that it is.

More magic

The six-point problem is equivalent to: How many 3-lists .z1; z2; z3/ satisfy z1Cz2Cz3 D
6 where z1 2 f0; 1; 2; 3; 4; 5; 6g, z2 2 f0; 2; 4; 6g, and z3 2 f0; 3; 6g? Here, z1 is the

contribution from one-point shots, z2 from two-point shots, and z3 from three-point shots.

Problems that fit into this form are tailor-made for generating functions. We introduced

such problems in Section 2.2.

Example: postage

In how many ways can we construct a postage of 39 cents using only three- and five-cent

stamps?

The contribution from three-cent stamps can be symbolized algebraically as

x0 C x3 C x6 C � � � C x36 C x39

and for five-cent stamps as

x0 C x5 C x10 C � � � C x30 C x35:

The answer is the coefficient of x39 in

.1C x3 C x6 C � � � C x36 C x39/.1C x5 C x10 C � � � C x30 C x35/

which, using Maple, is 3.

Question 108 How many ways are there to make change for 14 cents using five pennies,

three nickels, and one dime? Write down a generating function and find a coefficient.

Just like the basketball question, the question of the number of ways to make a postage

of k cents using only three- and five-cent stamps can be answered by finding the coefficient

of xk in the “extended” generating function

.1C x3 C x6 C x9 C � � � /.1C x5 C x10 C x15 C � � � /

or its equivalent, concise form
1

.1 � x3/.1 � x5/
: (3.10)

And this problem is equivalent to counting the 2-lists .z1; z2/ of integers satisfying

z1 C z2 D 39

z1 2 f0; 3; 6; 9; : : : ; g
z2 2 f0; 5; 10; 15; : : :g;
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because z1 equals the contribution from three-cent stamps to the total postage, and z2

equals the contribution from five-cent stamps.

Question 109 How would the concise generating function change if you could also use up

to two 12-cent stamps?

Example: integer partitions

How many partitions of 12 have parts of size at most 5?

There are as many such partitions as there are 5-lists .z1; z2; z3; z4; z5/ satisfying

z1 C z2 C z3 C z4 C z5 D 12

z1 2 f0; 1; 2; 3; : : :g
z2 2 f0; 2; 4; 6; : : :g

:::

z5 2 f0; 5; 10; 15; : : :g:

The answer is the coefficient of x12 in

.1C x C x2 C x3 C � � � /.1C x2 C x4 C x6 C � � � /.1C x3 C x6 C x9 C � � � /

.1C x4 C x8 C x12 C � � � /.1C x5 C x10 C x15 C � � � /;

or in concise form,

1

.1 � x/.1 � x2/.1 � x3/.1 � x4/.1 � x5/
:

The solution, with Maple, is 47.

Question 110 How would the concise form of the generating function change if we wanted

to know the number of partitions of 12 that have parts of size at most 5 but no parts of size

4?

Ordinary generating functions

Now that we know a little about what generating functions do, it’s time to learn what they

are. Informally, a generating function is a power series that organizes a number sequence

for display. The ordinary generating function (OGF) of the sequence a0; a1; a2; a3; : : : is

X

k>0

akxk D a0 C a1x C a2x2 C a3x3 C � � �

and a handy way to abbreviate the sequence a0; a1; a2; a3; : : : is fakgk>0. Take note that

the sum is from k D 0 to1.

Definition 3.3.1 (OGF) The ordinary generating function (OGF) of the number sequence

fakgk>0 is defined as
X

k>0

akxk .

The key feature is that ak is the coefficient of xk. In that way the OGF is like a file cabinet

and xk is the label on the file that contains the term ak . The term “ordinary” distinguishes

this generating function from other types. More on that in Section 3.4.
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Semi-formal power series: a necessary conversation

Generating functions are power series, so it appears that we need to rely on calculus to

work with them. This is partly true. We already mentioned that one of the more memorable

power series you studied in calculus was the geometric series

f .x/ D
X

k>0

xk

D 1C x C x2 C x3 C � � � :

This converges if and only if jxj < 1 (its radius of convergence), and if so, then it converges

to 1
1�x

. This means that from an analytical perspective, it is correct to say that these two

functions of x are the same as long as jxj < 1, i.e.,

X

k>0

xk D 1

1 � x
for jxj < 1.

Question 111 What is the value of the series
P

k>0.�1
3
/k? Of

P

k>1 4k5�k? Of
P

k>0 3k?

We can also do things like replace x by 2x and get a power series representation for the

function 1
1�2x

, i.e.,

X

k>0

.2x/k D
X

k>0

2kxk D 1

1 � 2x
for jxj < 1

2
.

Question 112 Why is the radius of convergence jxj < 1
2

instead of jxj < 1?

In fact, we already did something like this when we replaced x by x2 in getting the concise

form for the generating function (3.9).

In combinatorics our perspective mostly is algebraic, not analytical. The power series

1CxCx2Cx3C� � � puts the sequence 1; 1; 1; 1; : : : on display because the coefficient of

xk is always 1. In that way we consider
P

k>0 xk to be the OGF of the sequence f1gk>0.

But we will also borrow the more concise form 1
1�x

from calculus and write

X

k>0

xk D 1

1 � x
; (3.11)

and then carry on all sorts of operations on these two expressions as if they were completely

interchangeable. We won’t even mention convergence. In the same way we will say that

the expressions on each side of theD sign in

X

k>0

2kxk D 1

1 � 2x
(3.12)

are each OGFs for f2kgk>0. The left-hand side is in explicit form (the coefficient of xk is

available at a glance) and the right-hand side is in concise form.

The algebraic theory of formal power series allows us to get away with such blasphemy.

All of the algebraic operations that we will need to perform on generating functions, like

addition, multiplication, and partial fraction decomposition, are covered. Even differenti-

ation and antidifferentiation can be thought of as formal operations. We will not develop
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this theory but instead make free use of it. See the exercises in Section 3.4 for some basic

results.

In that sense the symbol x in a generating function is an indeterminate rather than a

variable. Very useful information can be had by evaluating generating functions at certain

values of x. But keep in mind that doing so requires a return to analytic theory and the

examination of convergence issues.

Bread-and-butter OGFs

Users of generating functions need fluency in the translation of a sequence into a concise

generating function and vice-versa. Illustrations of these techniques on three of the most

important classes of OGFs follow.

OGFs and geometric series

We have already observed that 1
1�x

is the concise form of the OGF for the all-1s sequence

f1gk>0 because
1

1 � x
D
X

k>0

xk:

More generally, if c is any real number, then the OGF for fckgk>0 is 1
1�cx

because

1

1 � cx
D
X

k>0

.cx/k D
X

k>0

ckxk:

The c D �1 special case gets used quite often:

1

1C x
D 1

1 � .�x/
D
X

k>0

.�1/kxk:

Therefore 1
1Cx

is the OGF of the alternating sequence
˚

.�1/kgk>0.

Question 113 Of what sequence is
1

1C 3x
the OGF?

OGFs and the binomial theorem

Set y D 1 in the the binomial theorem (Theorem 2.2.2, page 63) to obtain

.1C x/n D
n
X

kD0

 

n

k

!

xk D
X

k>0

 

n

k

!

xk:

This means that for fixed n, .1 C x/n is the OGF for the binomial coefficients
˚�

n
k

�	

k>0
.

Notice that the first sum stops at n while the second is infinite. Writing equality between

the two is fine because
�

n
k

�

D 0 for k > n. In that sense we justify saying that .1C x/n is

the OGF for the infinite sequence
 

n

0

!

;

 

n

1

!

;

 

n

2

!

; : : : ;

 

n

n

!

;

 

n

nC 1

!

„ ƒ‚ …

D0

;

 

n

nC 2

!

„ ƒ‚ …

D0

; : : :

rather than just for the finite sequence
�
n
0

�

;
�

n
1

�

; : : : ;
�
n
n

�

.

Question 114 What is the coefficient of x5 in .1 � x/9?
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OGFs and multisets

We could use our symbolic series technique to derive the OGF for the binomial coefficients
�

n
k

�

in the following way without using the binomial theorem. The binomial coefficient
�

n
k

�

equals the number of n-lists that solve the equation z1 C z2 C � � � C zn D k where each

zi is either 0 or 1. We symbolize the choice for each zi with the term x0 C x1, or 1C x.

Multiplying n copies of this term together gives the OGF for the number of n-lists that

solve the equation:

.1C x/
„ ƒ‚ …

z12f0;1g

.1C x/
„ ƒ‚ …

z22f0;1g

� � � .1C x/
„ ƒ‚ …

zn2f0;1g

D .1C x/n:

That’s it, since we know the number of n-lists that solve the equation is
�

n
k

�

.

The same idea works to get the concise form for the OGF of the sequence of mul-

tichoose coefficients
˚��

n
k

��	

k>0
. For a fixed positive integer n, we know that

��
n
k

��

is the

number of n-lists .z1; z2; : : : ; zn/ that solve the equation z1 C z2 C � � � C zn D k where

each zi is a nonnegative integer. Proceeding as before, the symbolic series for each zi is

1CxCx2Cx3C� � � . We already have a concise form for this: 1
1�x

. Multiplying n copies

of this together gives the OGF for the multichoose coefficients:

�
1

1 � x

�n

D 1

.1 � x/n
:

There is a nice duality between the OGFs for the binomial and multichoose coefficients:

� .1C x/n is the OGF for
˚�

n
k

�	

k>0
.

� .1 � x/�n is the OGF for
˚��

n
k

��	

k>0
.

Question 115 What is the coefficient of x8 in
x

.1 � x/7
?

Several examples

We now know several OGFs in both explicit and concise form. Here, n is a fixed positive

integer and c is a fixed real number:

sequence abbreviation OGF (explicit) OGF (concise)

1; 1; 1; 1; : : : f1gk>0

P

k>0 xk 1
1�x

1;�1; 1;�1; : : :
˚

.�1/k
	

k>0

P

k>0.�1/kxk 1
1Cx

1; c; c2; c3; : : :
˚

ck
	

k>0

P

k>0 ckxk 1
1�cx

�
n
0

�

;
�
n
1

�

;
�
n
2

�

;
�

n
3

�

; : : :
˚�

n
k

�	

k>0

P

k>0

�
n
k

�

xk .1C x/n

��
n
0

��

;
��

n
1

��

;
��

n
2

��

;
��

n
3

��

; : : :
˚��

n
k

��	

k>0

P

k>0

��
n
k

��

xk 1
.1�x/n

Of course, the first two lines of the table are special cases of the third.

Question 116 What is the coefficient of xk in
1

.1 � 5x/9
?

The following examples illustrate how to use these facts in solving combinatorial problems.
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Example: a distribution problem

In how many ways can we distribute 15 identical objects to 6 distinct recipients if each

recipient receives at least one object?

Think of this as counting the solutions to z1 C z2 C � � � C z6 D 15 where each zi 2
f1; 2; 3; : : :g. This means that to get the OGF we multiply six copies of xC x2C x3C : : :

together,

.x C x2 C x3 C � � � /6;

and the answer is the coefficient of x15.

This OGF is not one we recognize until we factor out an x:

x C x2 C x3 C � � � D x.1C x C x2 C � � � / D x � 1

1 � x
:

So the concise OGF is x6

.1�x/6 . To get the coefficient of x15 in this, it stands to reason that

we just need to find the coefficient of x15�6 D x9 in 1
.1�x/6 . Because we recognize this as

the OGF for
˚��

6
k

��	

k>0
, the answer is

��
6
9

��

D 2002.

It is worth mentioning how the factor x6 comes into play. It changes the coefficient

that we seek from the one on x15 to the one on x9. Combinatorially this corresponds to

distributing one object to each of the 6 recipients (there is one way to do that), and then

distributing the remaining 15 � 6 D 9 objects with no restrictions.

Question 117 Use an OGF to answer the same question but where each recipient receives

at least two objects.

Example: another distribution problem

In how many ways can we distribute k identical objects to 4 distinct recipients if recipient

1 receives at most two objects?

This is equivalent to counting the solutions to z1 C z2 C z3 C z4 D k in nonnegative

integers zi where z1 6 2. The generating function is

.1C x C x2/.1C x C x2 C x3 C � � � /3 D 1C x C x2

.1 � x/3
:

Expanded this is

1

.1 � x/3
C x

.1 � x/3
C x2

.1 � x/3
:

To find the coefficient of xk in the above expression, we just find the coefficient of xk in

each of the three terms and add them. The answer is
  

3

k

!!

C
  

3

k � 1

!!

C
  

3

k � 2

!!

:

This is because, for example, the coefficient of xk in 1=.1 � x/3 is
��

3
k

��

, so the coefficient

of xk in x=.1 � x/3 is
��

3
k�1

��

.

Question 118 Explain this answer combinatorially. How could you have derived it with-

out generating functions?
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Example: die-rolling and an important identity

In how many ways can we get a sum of 18 when five dice are rolled?

Letting zi be the value showing on the i -th die, we want the solutions to z1Cz2Cz3C
z4 C z5 D 18 where each zi 2 f1; 2; 3; 4; 5; 6g. Thus we want the coefficient of x18 in

.x C x2 C x3 C x4 C x5 C x6/5:

How can we find this coefficient without the aid of a computer and without multiplying it

all out by hand? First notice that

.x C x2 C x3 C x4 C x5 C x6/5 D x5.1C x C x2 C x3 C x4 C x5/5:

Now we use the identity 1CxCx2Cx3Cx4Cx5 D 1 � x6

1 � x
of Theorem 3.2.2. Substitute

in to get the OGF

x5

�
1 � x6

1 � x

�5

D x5 � .1 � x6/5 � 1

.1 � x/5
:

We want the coefficient of x18 in this OGF. It equals the coefficient of x18�5 D x13 in

.1 � x6/5 � 1

.1 � x/5
:

To get that, it is best to look at the expanded form of both terms in this product. The

expansion of .1 � x6/5 can be done with the binomial theorem:

.1 � x6/5 D
 

5

0

!

�
 

5

1

!

x6 C
 

5

2

!

x12 �
 

5

3

!

x18 C
 

5

4

!

x24 �
 

5

5

!

x30:

The expansion of 1=.1 � x/5 is by now familiar:

1

.1 � x/5
D
  

5

0

!!

C
  

5

1

!!

x C
  

5

2

!!

x2 C
  

5

3

!!

x3 C � � � :

The OGF is the product of these two expressions, so to find the coefficient of x13 in that

product we need to determine how the x13 term arises when we do the multiplication. Only

three terms contribute:

� The
�

5
0

�

term in .1 � x6/5 times the
��

5
13

��

x13 term in 1=.1 � x/5.

� The �
�

5
1

�

x6 term in .1 � x6/5 times the
��

5
7

��

x7 term in 1=.1 � x/5.

� The
�

5
2

�

x12 term in .1 � x6/5 times the
��

5
1

��

x term in 1=.1 � x/5.

The answer is
 

5

0

!  

5

13

!!

�
 

5

1

!  

5

7

!!

C
 

5

2

!  

5

1

!!

D 780:
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Summary

A generating function is a power series that stores a number sequence. The ordinary gener-

ating function (OGF) for the sequence a0; a1; a2; : : : is
P

k>0 akxk . Typical combinatorial

applications of generating functions involve computations like those of the product princi-

ple: we determine a generating function for each way to specify the objects being counted

and then multiply them. The algebraic act of multiplying and combining like terms does

the counting for us.

Generating functions are especially good at answering questions like: How many n-

lists .z1; z2; : : : ; zn/ of nonnegative integers satisfy z1 C z2 C � � � C zn D k and possibly

some additional restrictions? We gave several examples of these.

Exercises

1. In football, a team scores points in the following ways: two points (safety), three

points (field goal), six points (touchdown only), seven points (touchdown plus extra

point), and eight points (touchdown plus two-point conversion). Find a concise OGF

of fakgk>0 where ak is the number of ways a team can score a total of k points.

2. In each case, find a concise OGF for answering the question and also identify what

coefficient you need.

(a) How many ways are there to distribute 14 forks to 10 people so that each person

receives one or two forks?

(b) You can buy soda either by the can, or in 6-, 12-, 24-, or 30-packs. How many

ways are there to buy exactly k cans of soda?

(c) How many ways are there to put a total postage of 75 cents on an envelope, using

3-, 5-, 10-, and 12-cent stamps?

(d) At the movies you select 24 pieces of candy from among five different types.

How many ways can you do this if you want at least two pieces of each type?

(e) How many solutions to z1 C z2 C z3 D 15 are there, where the zi are integers

satisfying 0 6 zi 6 8?

(f) How many ways are there to make change for a dollar using only pennies, nickels,

dimes, and quarters?

3. Find the coefficient of...

(a) x60 in
1

.1 � x/23
.

(b) xk in
1C x C x4

.1 � x/5
.

(c) x3 in
x

.1 � x/8
.

(d) x50 in .x9 C x10 C x11 C � � � /3.

(e) xk�1 in
1C x

.1 � 2x/5
.

4. A professor grades an exam that has 20 questions worth five points each. The profes-

sor awards zero, two, four, or five points on each problem. Find a concise OGF that

can be used to determine the number of ways to obtain an exam score of k points.



“master” — 2010/9/20 — 12:30 — page 114 — #132
i

i

i

i

i

i

i

i
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5. A restaurant offers chicken wings at the following sizes and prices.

number of wings 7 10 15 25 60 120

price $5.49 $7.49 $10.49 $15.99 $35.99 $69.99

(a) Determine a concise OGF so that the coefficient of xk equals the number of ways

to order exactly k wings.

(b) Determine a concise OGF so that the coefficient of xk equals the number of ways

to spend exactly k dollars. (Can you keep the units in dollars or do you need to

make an adjustment?)

6. Find the number of ways to distribute 15 identical pieces of candy to eight people so

that five of the people (being adults) receive at most one piece while the other three

(being children) can receive any number.

7. Find the number of solutions to z1C z2C z3C z4 D 10 where the zi are nonnegative

integers such that z1 6 4, z2 is odd, z3 is prime, and z4 2 f1; 2; 3; 6; 8g.
8. Find the number of solutions to 6z1C9z2C20z3 D 150 where the zi are nonnegative

integers.

9. Use partial fraction decomposition to find the coefficient of xk in each OGF.

(a)
1

.1 � x/.1 � 2x/

(b)
1

.1 � x/.1 � x2/

3.4 Using generating functions, part II

In this second section on generating functions we practice the algebraic manipulations

needed to extract coefficients and therefore solve counting problems. We also derive some

combinatorial identities and encounter an amazing proof of Euler regarding integer parti-

tions. Finally, we introduce the exponential generating function.

Notation for coefficient extraction

Because answering a combinatorial question often amounts to finding a coefficient in a

certain generating function, it helps to have notation to streamline the process. If f .x/ is a

generating function, then we define

r
f .x/

z
xk
D the coefficient of xk in f .x/.

So if f .x/ D
P

k>0 akxk , then
r

f .x/
z

xk
D ak .

Here are some properties of this notation. An explanation or proof of each follows.

1.
r

c � f .x/
z

xk
D c �

r
f .x/

z
xk

2.
r

f .x/C g.x/
z

xk
D

r
f .x/

z
xk
C

r
g.x/

z
xk

3.
r

xj � f .x/
z

xk
D

r
f .x/

z
xk�j
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4.

s
1

1 � cx

{

xk

D ck

5.
r

.1C x/n
z

xk
D
 

n

k

!

6.

s
1

.1 � x/n

{

xk

D
  

n

k

!!

Properties #1-3 have intuitive appeal, and in fact we already used them in our examples in

the last section. In particular, Property #1 says that scaling an OGF by a constant c simply

scales each coefficient by c. Property #2 says that we may find the coefficient of xk in the

sum of two OGFs by finding the coefficient of xk in each OGF and adding them. Property

#3 says that multiplying an OGF by xj shifts the location of each coefficient to the right

by j places.

Question 119 Assuming f .x/ D
P

k>0 akxk and g.x/ D
P

k>0 bkxk are arbitrary

OGFs, prove properties #1 and #3.

Each of properties #4-6 represents a different way to write a fact you learned in the

last section. For example, property #5 just says that .1 C x/n is the OGF of the binomial

coefficients
�

n
k

�

.

If you recall the die-rolling example of the last section—In how many ways can we get

a sum of 18 when five dice are rolled?—the answer was the coefficient of x15 in x6=.1 �
x/6. Using our new notation, we would find this coefficient as follows:

s
x6

.1 � x/6

{

x15

D
s

1

.1 � x/6

{

x9

D
  

6

9

!!

:

Question 120 Find
r

.x C x2/10
z

x14
. Begin by factoring out a power of x.

Another example from the previous section—In how many ways can we distribute k

identical objects to 4 distinct recipients if recipient 1 must receive at most two objects?—

required finding the coefficient of xk in .1C x C x2/=.1 � x/3. In new notation,
s

1C x C x2

.1 � x/3

{

xk

D
s

1

.1 � x/3
C x

.1 � x/3
C x2

.1 � x/3

{

xk

D
s

1

.1 � x/3

{

xk

C
s

x

.1 � x/3

{

xk

C
s

x2

.1 � x/3

{

xk

D
s

1

.1 � x/3

{

xk

C
s

1

.1 � x/3

{

xk�1

C
s

1

.1 � x/3

{

xk�2

D
  

3

k

!!

C
  

3

k � 1

!!

C
  

3

k � 2

!!

:

Question 121 What is the coefficient of x8 in
.1Cx/2

1�3x
?

The convolution formula for OGFs

Because most problems that we have solved using generating functions involve multiplying

them, we need an understanding of how this happens. In other words, if f .x/ and g.x/ are

the OGFs of two sequences, then what is the sequence for which f .x/ � g.x/ is the OGF?
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Let f .x/ D a0Ca1xCa2x2C� � � and g.x/ D b0Cb1xCb2x2C� � � . Try multiplying

these out using the distributive law of algebra:

.a0 C a1x C a2x2 C a3x3 C � � � /.b0 C b1x C b2x2 C b3x3 C � � � /:

When you do, you get

a0b0 C .a0b1 C a1b0/x C .a0b2 C a1b1 C a2b0/x2

C .a0b3 C a1b2 C a2b1 C a3b0/x3 C � � �

In general, the coefficient of xk is

a0bk C a1bk�1 C a2bk�2 C � � � C ak�2b2 C ak�1b1 C akb0

or
Pk

j D0 aj bk�j . This is known as the convolution formula for OGFs.

Theorem 3.4.1 (convolution of OGFs) If f .x/ D
X

j >0

aj xj and g.x/ D
X

j >0

bj xj , then

for any k > 0,

r
f .x/ � g.x/

z
xk
D

k
X

j D0

aj bk�j :

In the context of formal power series, this is simply how multiplication of series is de-

fined—it’s not a true theorem. With addition of power series defined in the natural way

and multiplication defined according to the convolution formula, these operations have the

necessary properties (commutativity, associativity, etc.) that allow the theory of algebraic

structures to justify our generating function calculations. See the exercises if you’re inter-

ested in investigating some of this.

Using the convolution formula

The convolution formula allows for effortless derivation of some combinatorial identities.

These derivations feel like combinatorial proofs in that we ask a question and answer it in

two ways. The question we ask is not, “How many?” but rather, “What is the coefficient?”

In combinatorial proofs, the creativity comes in asking the right question. In these algebraic

proofs, the creativity comes in producing the correct algebraic expression.

Vandermonde’s formula, rediscovered

Of course .1C x/10 D .1 C x/6 � .1 C x/4 is true by the laws of algebra. From an OGF

point of view, this means that the coefficient of xk in .1C x/10 equals the coefficient of xk

in .1C x/6 � .1C x/4. In other words,

r
.1C x/10

z
xk
D

r
.1C x/4 � .1C x/6

z
xk

: (3.13)

Try calculating each coefficient. The coefficient on the left is familiar:

r
.1C x/10

z
xk
D
 

10

k

!

:
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Now attack the coefficient on the right with convolution. Since

.1C x/6 � .1C x/4 D

0

@
X

k>0

 

6

k

!

xk

1

A

0

@
X

k>0

 

4

k

!

xk

1

A ;

apply the convolution formula to get

r
.1C x/6 � .1C x/4

z
xk
D

k
X

j D0

 

6

j

! 

4

k � j

!

:

Since these coefficients are equal—by equation (3.13) above—we just proved that

k
X

j D0

 

6

j

! 

4

k � j

!

D
 

10

k

!

:

There is a combinatorial way to prove this. Begin by asking the question: how many

k-committees can be formed from a group of six men and four women?

Question 122 Finish the combinatorial proof of this identity.

When applied in general, this idea results in the identity known as Vandermonde’s

formula. We gave a combinatorial proof in Section 2.2.

Theorem 3.4.2 (Vandermonde’s formula) For integers m; n; k > 0,

k
X

j D0

 

m

j

! 

n

k � j

!

D
 

mC n

k

!

:

Proof: Let m; n; k > 0. Observe that

.1C x/mCn D .1C x/m � .1C x/n: (3.14)

What is the coefficient of xk in each of these expressions?

We know the coefficient on the left-hand side is

r
.1C x/mCn

z
xk
D
 

mC n

k

!

:

For the right-hand side, since

.1C x/m � .1C x/n D

0

@
X

j >0

 

m

k

!

xj

1

A

0

@
X

j >0

 

n

k

!

xj

1

A ;

the convolution formula then implies that the coefficient on the right-hand side is

r
.1C x/m � .1C x/n

z
xk
D

k
X

j D0

 

m

j

! 

n

k � j

!

:

These coefficients are equal by equation (3.14), and the formula follows.
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A multichoose-coefficient identity

From the equation

1

.1 � x/n
D 1

.1 � x/n�1
� 1

1 � x

what identity can we derive?

As in the previous example, begin by equating the coefficient of xk on the left-hand

and right-hand sides. On the left,

s
1

.1 � x/n

{

xk

D
  

n

k

!!

:

On the right we know that

1

.1 � x/n�1
� 1

1 � x
D

0

@
X

j >0

  

n� 1

j

!!

xj

1

A

0

@
X

j >0

xj

1

A ;

so by the convolution formula

s
1

.1 � x/n�1
� 1

1 � x

{

xk

D
k
X

j D0

  

n � 1

j

!!

� 1 D
k
X

j D0

  

n � 1

j

!!

:

(Notice that the coefficient of xk in 1
1�x

is always 1.) This proves the identity

  

n

k

!!

D
k
X

j D0

  

n� 1

j

!!

:

Question 123 What familiar identity results from .1C x/n D .1C x/n�1 � .1C x/? Prove

your answer.

Counting certain distributions

In how many ways can you distribute 20 identical objects to 10 distinct recipients such that

each recipient receives at most five objects?

OGFs and the convolution formula make this problem automatic. This problem is

equivalent to counting the solutions to

z1 C z2 C � � � C z10 D 20

each zi 2 f0; 1; 2; 3; 4; 5g

and so the answer is the coefficient of x20 in

.1C x C x2 C x3 C x4 C x5/10:

Replace 1C xC x2 C � � � C x5 by 1�x6

1�x
and extract the coefficient of x20 in the resulting
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expression:
t
�

1 � x6

1 � x

�10
|

x20

D
s

.1 � x6/10 � 1

.1 � x/10

{

x20

D

u
v
0

@
X

j >0

 

10

j

!

.�x6/j

1

A

0

@
X

j >0

  

10

j

!!

xj

1

A

}
~

x20

D

u
v
0

@
X

j >0

 

10

j

!

.�1/j x6j

1

A

0

@
X

j >0

  

10

j

!!

xj

1

A

}
~

x20

:

Rather than blindly applying the convolution formula, it is perhaps best to write out the

first few terms of the sum on the left: we want the coefficient of x20 in

D
  

10

0

!

�
 

10

1

!

x6 C
 

10

2

!

x12 �
 

10

3

!

x18 C � � �
!0

@
X

k>0

  

10

k

!!

xk

1

A :

What terms in each sum contribute to the x20 term when carrying out the multiplication?

There are four pairs that do:

term in first sum term in second sum resulting term in product

�
10
0

� ��
10
20

��

x20
�

10
0

���
10
20

��

x20

�
�

10
1

�

x6
��

10
14

��

x14 �
�

10
1

���
10
14

��

x20

�
10
2

�

x12
��

10
8

��

x8
�

10
2

���
10
8

��

x20

�
�

10
3

�

x18
��

10
2

��

x2 �
�

10
3

���
10
2

��

x20

So the coefficient of x20 is
 

10

0

!  

10

20

!!

�
 

10

1

!  

10

14

!!

C
 

10

2

!  

10

8

!!

�
 

10

3

!  

10

2

!!

which equals 2,930,455.

Perhaps you recognize this answer as one that might result from applying inclusion-

exclusion. (The alternating signs give it away.) If you did Exercise 8 in Section 3.1, then

you obtained this very same answer but with inclusion-exclusion. Use whichever method

you prefer. It is worth marveling, however, at how the factor .1�x6/10 produces the correct

binomial coefficients with the correct signs!

Question 124 What is the coefficient of x7 in

�
1 � x3

1 � x

�5

?

Partitions, OGFs, and Euler

The OGF of the partition numbers
We know and have used the OGFs for the binomial and multichoose coefficients. We will

find the OGF of the Stirling numbers of the second kind in Section 4.3. How about the

OGF of the integer partition numbers P.n/?
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In an example from Section 3.3 we found that the number of partitions of 12 into parts

of size at most 5 equals the coefficient of x12 in the OGF

1

.1 � x/.1 � x2/.1 � x3/.1 � x4/.1 � x5/
:

In fact, this is the OGF for the number of partitions of n into parts of size at most 5:
s

1

.1 � x/.1 � x2/ � � � .1 � x5/

{

xn

D partitions of n into parts of size at most 5:

Question 125 Find an OGF so that the coefficient of xk equals the number of partitions

of k into parts of size 3, 5, 7, or 9.

The same reasoning shows that if we simply extend the product in the denominator to

include all factors 1 � xj for j > 1, then we get the OGF for the partition numbers.

Theorem 3.4.3 The OGF of the integer partition numbers
˚

P.n/
	

n>0
is

1

.1 � x/.1 � x2/.1 � x3/ � � � D
Y

j >1

1

1 � xj
:

Euler’s amazing discovery

It is Leonhard Euler whom mathematicians credit with the first use of the generating func-

tion. Perhaps Euler’s most famous result involving generating functions is his proof that the

number of partitions of n into odd parts equals the number of partitions of n into distinct

parts. It is beautiful, clever, and short. Here it is.

Let on equal the number of partitions of n into odd parts and let dn equal the number

of partitions of n into distinct parts. Let O.x/ WD
P

n>0 onxn and D.x/ WD
P

n>0 dnxn

be their OGFs. Euler proved the result by showing that O.x/ D D.x/.

To construct O.x/ we can start with the OGF of Theorem 3.4.3 and remove the terms

corresponding to parts of even size:

O.x/ D 1

.1 � x/.1 � x3/.1 � x5/ � � � :

To construct D.x/ we just observe that each part can be included 0 or 1 times, so

D.x/ D .1C x/.1C x2/.1C x3/.1C x4/ � � � :
Now here’s the most important part of the whole proof. Notice that for j > 1,

.1 � xj /.1C xj / D 1 � x2j

which means that

1C xj D 1 � x2j

1 � xj
:

Do this to each term of D.x/ and then cancel all that you can, which amounts to every term

in the numerator and every other term in the denominator:

D.x/ D .1C x/.1C x2/.1C x3/.1C x4/ � � �

D 1 � x2

1 � x
� 1 � x4

1 � x2
� 1 � x6

1 � x3
� 1 � x8

1 � x4
� � � �

D 1

.1 � x/.1 � x3/.1 � x5/ � � �
D O.x/:

That’s it!
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Theorem 3.4.4 (Euler) The number of partitions of n into distinct parts equals the num-

ber of partitions of n into odd parts.

Exponential generating functions

The next most useful type of generating function in combinatorics is the exponential gen-

erating function. Let’s take a brief look at it. The reason for its use will become clear in

subsequent material.

The most important power series from calculus is that for ex, namely

ex D
X

k>0

xk

kŠ
for jxj <1.

In combinatorics, one way of interpreting this is that ex is the OGF of the sequence
˚

1
kŠ

	

k>0

because the coefficient of xk is 1
kŠ

.

But that is not the most useful interpretation. We also consider ex to be the exponential

generating function of the sequence 1; 1; 1; 1; : : : because the coefficient of xk

kŠ
is always 1.

In an exponential generating function, the placeholder for ak is xk

kŠ
rather than xk .

Definition 3.4.5 (EGF) The exponential generating function (EGF) of the number se-

quence fakgk>0 is defined as
X

k>0

ak

xk

kŠ
.

You must first strive to understand the somewhat subtle difference between OGFs and

EGFs. It helps to start with the familiar functions

1

1 � x
; ex; and .1C x/n;

and ask the question, “For what sequence is each of these the EGF?”

Notice that (use the old multiply-by-1 trick, where 1 looks like kŠ
kŠ

in this case)

1

1 � x
D
X

k>0

xk D
X

k>0

kŠ
xk

kŠ
;

so although 1
1�x

is the ordinary generating function of the sequence f1gk>0, it is simulta-

neously the exponential generating function of the sequence fkŠgk>0. Put another way,

s
1

1 � x

{

xk

D 1

while, using the obvious extension of our coefficient-extraction notation,

s
1

1 � x

{

xk=kŠ

D kŠ:

So what then is the EGF of the all-1s sequence f1gk>0? It is ex because

r
ex

z
xk=kŠ

D

u
vX

k>0

xk

kŠ

}
~

xk=kŠ

D 1:
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In fact, for any real number c,

ecx D
X

k>0

.cx/k

kŠ
D
X

k>0

ck xk

kŠ
;

and so ecx is the EGF of the sequence fckgk>0.

For .1C x/n we can use
�

n
k

�

D .n/k

kŠ
to write

r
.1C x/n

z
xk=kŠ

D

u
vX

k>0

 

n

k

!

xk

}
~

xk=kŠ

D

u
vX

k>0

.n/k

xk

kŠ

}
~

xk=kŠ

D .n/k :

This means that .1C x/n is the EGF of
˚

.n/k

	

k>0
. Combinatorially, .1C x/n is the OGF

for the k-subsets of an n-set while it is the EGF for the k-permutations of an n-set.

Question 126 What is the coefficient of x5

5Š
in .1 C x/9? What is the coefficient of x5 in

.1C x/9?

The following table summarizes our work on EGFs.

sequence abbreviation EGF (explicit) EGF (concise)

1; 1; 1; 1; : : : f1gk>0

P

k>0
xk

kŠ
ex

1;�1; 1;�1; : : :
˚

.�1/k
	

k>0

P

k>0.�1/k xk

kŠ
e�x

1; c; c2; c3; : : : fckgk>0

P

k>0 ck xk

kŠ
ecx

.n/0; .n/1; .n/2; .n/3; : : :
˚

.n/k

	

k>0

P

k>0.n/k
xk

kŠ
.1C x/n

0Š; 1Š; 2Š; 3Š; : : : fkŠgk>0

P

k>0 kŠ xk

kŠ
1

1�x

The convolution formula for EGFs

As for OGFs, there is a convolution formula for EGFs. The question is: if f .x/ and g.x/

are the EGFs of the sequences fakgk>0 and fbkgk>0, then what is the sequence that has

f .x/ � g.x/ as its EGF?

This can be accomplished using the convolution formula for OGFs and a quick obser-

vation. The quick observation is the link between doing coefficient extraction on OGFs and

on EGFs, namely r
f .x/

z
xk=kŠ

D kŠ �
r

f .x/
z

xk
:

We will use the convolution formula in the next section to solve recurrence relations.

Theorem 3.4.6 (convolution of EGFs) If f .x/ D
X

j >0

aj

xj

j Š
and g.x/ D

X

j >0

bj

xj

j Š
, then

for any k > 0,
r

f .x/ � g.x/
z

xk=kŠ
D

k
X

j D0

 

k

j

!

aj bk�j :
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Proof: Let f .x/ and g.x/ be the EGFs of the hypothesis. Then

r
f .x/ � g.x/

z
xk=kŠ

D kŠ �
r

f .x/ � g.x/
z

xk
:

Now find the coefficient using the convolution formula for OGFs and simplify:

kŠ �
r

f .x/ � g.x/
z

xk
D kŠ �

u
v
0

@
X

j >0

aj

j Š
xj

1

A

0

@
X

j >0

bj

j Š
xj

1

A

}
~

xk

D kŠ

k
X

j D0

aj

j Š

bk�j

.k � j /Š

D
k
X

j D0

kŠ

j Š.k � j /Š
aj bk�j

D
k
X

j D0

 

k

j

!

aj bk�j :

A quick example

Suppose that the EGF of the sequence fakgk>0 is
e2x

1 � x
. What is ak?

Since e2x is the EGF of f2j gj >0 and 1=.1 � x/ is the EGF of fj Šgj >0, apply the

convolution formula for EGFs with aj D 2j and bj D j Š to get

ak D
s

e2x � 1

1 � x

{

xk=kŠ

D
k
X

j D0

 

k

j

!

2j .k � j /Š

D kŠ

k
X

j D0

2j

j Š
:

Question 127 Find a formula for the k-th term of the sequence having EGF
.1C x/8

ex
.

Summary

The convolution formula for OGFs is a fundamental tool because it allows for analysis of

a sequence whose OGF is expressed as a product. As such, many combinatorial identities

can be easily derived from convolution simply by comparing coefficients on both sides of

an algebraic identity.

The exponential generating function (EGF) is similar to the OGF except that the “place-

holder” for the k-th term of the sequence is xk=kŠ rather than just xk . As for OGFs, the

convolution formula for EGFs is useful. The sections and chapters to follow should give

you insight into how to make the choice between using an OGF or EGF.
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Exercises

1. Determine the number of ways to place an order for a dozen donuts where there are

six different varieties available and you order between one and four (inclusive) of each

variety.

2. Derive a combinatorial identity via the equation

1

.1 � x/mCn
D 1

.1 � x/m
� 1

.1 � x/n
:

3. Use the convolution formula to find the coefficient of xk in
.1C x/n

.1 � x/m
.

4. Give an example of a distribution-counting question whose answer is the coefficient

of xk in the OGF given in Exercise 3.

5. Let a, b, and c be nonzero real numbers. Find the coefficient of xk in
a

b C cx
.

6. Let j and n be fixed positive integers. Find the coefficient of xk in
1

.1 � xj /n
.

7. Prove that if c 6D 0, then
r

f .x/
z

cxk
D 1

c
�
r

f .x/
z

xk
.

8. Let an equal the number of n-letter passwords where each letter is A, B, or C. Explain

why e3x is the EGF for fangn>0.

9. Suppose the EGF of fcngn>0 is .ex � 1/2. Find a formula for cn.

10. Repeat the previous exercise for .ex � 1/3.

11. Here is how Euler proved that the binary representation of any nonnegative integer is

unique. For n > 0, let bn denote the number of ways to write n as a sum of powers of

2. Let B.x/ be the OGF of fbngn>0.

(a) Explain why B.x/ D .1C x/.1C x2/.1C x4/.1C x8/.1C x16/ � � � .
(b) Explain why B.x/ D .1C x/B.x2/.

(c) Use part (b) to prove that bn D 1 for all n > 0.

12. (abstract algebra) Let P be the set of all infinite sequences Œa0; a1; a2; : : : � where

the ai are complex numbers. For f; g 2 P, where

f D Œa0; a1; a2; : : : � and g D Œb0; b1; b2; : : : �;

define addition f C g WD Œa0 C b0; a1 C b1; a2 C b2; : : : � and multiplication

f � g WD Œa0b0; a0b1 C a1b0; a0b2 C a1b1 C a2b0; : : : �

where in general the k-th element is
Pk

iD0 ai bk�i . Obviously P is closed under these

operations.

Prove that .P;C; �/ is a commutative ring. (The associative property of � requires

care.)

13. (abstract algebra) This continues the previous exercise.

(a) What are the additive and multiplicative identity elements in P?

(b) Show that P has no divisors of zero, and hence is an integral domain.
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3.5. Techniques for solving recurrence relations 125

(c) The multiplicative inverse of f 2 P is that g 2 P for which f � g D
Œ1; 0; 0; 0; : : : �. Use f �1 to denote the multiplicative inverse of f .

Suppose f D Œa0; a1; a2; : : : �. Prove that f �1 exists if and only if a0 6D 0.

Travel Notes

The use of generating functions by combinatorialists was in full force when Niven (1969)

wrote a paper that made clear the reason, as mentioned in Section 3.3, when and why one

can ignore the issue of convergence. He opens the paper by writing

Our purpose is to develop a systematic theory of formal power series. Such theory

is known, or at least presumed, by many writers on mathematics, who use it to avoid

questions of convergence in infinite series. What is done here is to formulate the theory

on a proper logical basis and thus to reveal the absence of the convergence question.

Thus “hard” analysis can be replaced by “soft” analysis in many applications.

It can be argued that his paper was an important step in the establishment of combinatorics

as a field in its own right. The exercises in this section labeled “abstract algebra” concern

some basic results.

3.5 Techniques for solving recurrence relations

Recurrence relations are convenient ways to describe number sequences. We introduced

them in Section 3.2. A most famous one is that which defines the sequence of Fibonacci

numbers:
F0 D 1

F1 D 1

Fn D Fn�1 C Fn�2 for n > 2.

In this appears sufficient information to calculate the entire sequence, namely the initial

conditions F0 D 1, F1 D 1; the recurrence Fn D Fn�1 C Fn�2; and the index set n > 2

over which the recurrence is valid. We can start with the initial conditions and iteratively

compute successive values:

F0 D 1

F1 D 1

F2 D F1 C F0 D 1C 1 D 2

F3 D F2 C F1 D 2C 1 D 3

F4 D F3 C F2 D 3C 2 D 5

F5 D F4 C F3 D 5C 3 D 8

:::

But we cannot, it appears, jump right to the 100th Fibonacci number F100 without com-

puting all preceding values.

The goal of this section and the next is to determine formulas for the n-th term of a

sequence defined by a recurrence relation. In a sense that is what it means to “solve” a

recurrence relation: to have a non-recursive formula for the n-th term.
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We have already met several recurrence relations. We can think of the familiar Pascal

identity
�

n
k

�

D
�

n�1
k�1

�

C
�

n�1
k

�

as a dual recurrence in both n and k. In Theorem 2.3.3 on

page 71 we proved the recurrence

B.n/ D
n�1
X

j D0

 

n� 1

j

!

B.j /

for the Bell numbers. In Section 4.3 we show how to apply the techniques that we learn in

this section to obtain a beautiful formula for the Bell number B.n/.

The approach to solving recurrence relations uses the recurrence and initial conditions

to determine the generating function (either ordinary or exponential, depending) of the

sequence and then extracts a formula for the n-th term by finding the coefficient of xn or
xn

nŠ
. This section highlights the techniques on particular examples.

An easy example with OGFs

We begin with a simple example that illustrates the method. Our goal is to find a formula

for the n-th term of the sequence fangn>0 defined by the recurrence relation

a0 D 1

an D 3an�1 for n > 1.

Though a formula for an is not hard to guess, it is best to start simple.

Question 128 What appears to be a formula for an?

The method works as follows. First define f .x/ WD
P

n>0 anxn as the OGF of the

sequence fangn>0. Then use the recurrence to find a concise form for this generating func-

tion. Once found, extract the coefficient of xn to get the formula for an.

Take the recurrence an D 3an�1 and multiply through by xn to get

anxn D 3an�1xn:

Then, sum over the values of the index n for which the recurrence is defined. In this case,

that’s over n > 1, so we get

X

n>1

anxn D
X

n>1

3an�1xn: (3.15)

Our goal now is to write this in terms of the OGF f .x/ which requires a little algebraic

manipulation of each piece. The first sum equals f .x/ less its 0-th term a0, which in turn

equals 1 by the initial condition:

X

n>1

anxn D
 
X

n>0

anxn

!

� a0 D f .x/ � 1:

The sum on the right-hand side of equation (3.15) equals 3x � f .x/:

X

n>1

3an�1xn D 3x
X

n>1

an�1xn�1 D 3x � f .x/:
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3.5. Techniques for solving recurrence relations 127

Factoring out x accomplishes the necessary task of making the index on an�1 agree with

the power of xn�1. (You’ll be doing that a lot in what follows.)

Now substitute these pieces into the equation (3.15) to get

f .x/� 1 D 3x � f .x/:

Now we just solve for the unknown generating function f .x/:

f .x/ � 1 D 3x � f .x/ ” .1 � 3x/ � f .x/ D 1 ” f .x/ D 1

1 � 3x
:

So 1
1�3x

is the OGF of the sequence fangn>0. The formula for an follows immediately by

extracting the coefficient of xn:

an D
s

1

1 � 3x

{

xn

D 3n;

so an D 3n for all n > 0.

An easy example with EGFs

Next let’s look at the recurrence relation

b0 D 2

bn D nbn�1 for n > 1.

It is instructive to look at the first few terms.

Question 129 What are the values of b1; b2; : : : ; b5? Can you guess a formula for bn?

What if the initial condition were changed to b0 D 1?

This sequence yields easily to an EGF but not an OGF. Follow carefully to see if you can

spot the reason.

Define g.x/ WD
P

n>0 bn
xn

nŠ
as the EGF of the sequence. Take the recurrence bn D

nbn�1 and multiply it by xn

nŠ
to get

bn

xn

nŠ
D nbn�1

xn

nŠ

and then sum over n > 2 which are the values of n for which the recurrence is defined:

X

n>1

bn

xn

nŠ
D
X

n>1

nbn�1

xn

nŠ
: (3.16)

Now do the accounting trick to write this equation in terms of g.x/. The sum on the left is

g.x/ less its 0-th term b0 D 2:

X

n>1

bn

xn

nŠ
D
 

X

n>0

bn

xn

nŠ

!

� b0 D g.x/ � 2:

The sum on the right-hand side of equation (3.16) needs bn�1 matched with xn�1

.n�1/Š
in order

to relate to g.x/. Accomplish this by canceling the n and factoring out an x:

X

n>1

nbn�1

xn

nŠ
D
X

n>1

bn�1

xn

.n � 1/Š
D x

X

n>1

bn�1

xn�1

.n � 1/Š
D x � g.x/:
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(See how nicely the EGF’s denominator of nŠ takes care of the n in the numerator?) The

equation (3.16) is now equivalent to g.x/�2 D x �g.x/. Solve for g.x/ to get g.x/ D 2
1�x

.

Now find bn by extracting the the coefficient of xn

nŠ
in 2

1�x
:

bn D
s

2

1 � x

{

xn=nŠ

D 2 �
s

1

1 � x

{

xn=nŠ

D 2 � nŠ:

Therefore bn D 2 � nŠ for all n > 0. (Remember that 1
1�x

is the EGF of fnŠgn>0.)

Another example with OGFs

Now let’s do an OGF example that requires a little more work. We will find a formula for

the n-th term of the sequence fcngn>0 defined by

c0 D 1

cn D 4cn�1C 1 for n > 1.

Guessing a formula for cn based on a few values is a little harder than in the previous

examples.

Question 130 What are the values c1; c2; : : : ; c5? Can you guess a formula for cn?

Define h.x/ WD
P1

nD0 cnxn as the OGF for the sequence fcng1nD0. Begin with the

recurrence and multiply the whole thing by xn:

cnxn D 4cn�1xn C xn:

Next, sum over n > 1 to get
X

n>1

cnxn D
X

n>1

4cn�1xn C
X

n>1

xn: (3.17)

You should recognize the sum on the left-hand side as the OGF h.x/ minus its 0-th term:

X

n>1

cnxn D
 
X

n>0

cnxn

!

� c0 D h.x/ � 1:

From the second sum in equation (3.17), factor out 4x to remove the constant and to make

the indices on cn�1 and xn agree. Then the remaining sum is just h.x/:

4x
X

n>1

cn�1xn�1 D 4x � h.x/:

The right-most sum in equation (3.17) is almost 1
1�x

:

X

n>1

xn D
 
X

n>0

xn

!

� 1 D 1

1 � x
� 1:

Now we have transformed equation (3.17) into

h.x/ � 1 D 4x � h.x/C 1

1 � x
� 1: (3.18)

Use algebra to solve for the unknown OGF h.x/:

h.x/ D 4x � h.x/C 1

1 � x
” h.x/ D 1

.1 � 4x/.1 � x/
:

At this point there are two ways to proceed. Either works just fine, but by doing both

we gain a couple of interesting things.
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Method 1: use the convolution formula

In h.x/ D 1
1�4x

� 1
1�x

, the first term is the OGF for f4ngn>0 and the second is the OGF for

f1gn>0. By the convolution formula for OGFs,

cn D
n
X

j D0

4j � 1 D
n
X

j D0

4j :

Our desired formula is cn D
Pn

j D0 4j , for n > 0.

Question 131 Do the values that this formula produces match those that you computed

from the recurrence in Question 130?

Method 2: use partial fraction decomposition

First, find the partial fraction decomposition of h.x/:

h.x/ D 1

.1 � 4x/.1 � x/
D A

1 � 4x
C B

1 � x
:

The solution is A D 4=3 and B D �1=3. (This is the same technique used in calculus to

find the antiderivative of rational functions.)

Question 132 Show the details that give A D 4=3 and B D �1=3.

This means

h.x/ D 4=3

1 � 4x
� 1=3

1 � x
:

So then

cn D
s

4=3

1 � 4x
� 1=3

1 � x

{

xn

D 4

3
�
s

1

1 � 4x

{

xn

� 1

3

s
1

1 � x

{

xn

D 4

3
� 4n � 1

3
� 1

D 4nC1 � 1

3
:

for n > 0.

Methods 1 and 2 are both correct, so we get the formula
Pn

j D0 4j D 4nC1�1
3

as a

by-product.

Another example with EGFs

Next let’s find a formula for the n-th term of the sequence fdngn>0 defined by

d0 D 1

dn D ndn�1 C 1 for n > 1,

which is identical to the previous recurrence relation except for the non-constant n in place

of 4. Since an EGF worked so well on the similar recurrence bn D nbn�1, let’s try it again.

Question 133 What are the values d1; d2; : : : ; d5?
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130 3. Algebraic Tools

Define E.x/ WD
P

n>0 dn
xn

nŠ
as the EGF of this sequence. Again, our goal is to find the

coefficient of xn

nŠ
in E.x/.

Multiply the recurrence by xn

nŠ
to get

dn

xn

nŠ
D ndn�1

xn

nŠ
C xn

nŠ

and then sum over the values of n for which the recurrence is defined:
X

n>1

dn

xn

nŠ
D
X

n>1

ndn�1

xn

nŠ
C
X

n>1

xn

nŠ
: (3.19)

Now analyze each term as usual. The first sum equals E.x/ minus its first term:

X

n>1

dn

xn

nŠ
D
 
X

n>0

dn

xn

nŠ

!

� d0 D E.x/ � 1:

In the second sum we should simplify then factor out x:

X

n>1

ndn�1

xn

nŠ
D
X

n>1

dn�1

xn

.n � 1/Š
D x

X

n>1

dn�1

xn�1

.n � 1/Š
D x �E.x/:

And the third is another old friend:

X

n>1

xn

nŠ
D
 
X

n>0

xn

nŠ

!

� 1 D ex � 1:

Now equation (3.19) reads E.x/ � 1 D x �E.x/C ex � 1 from which you should get

E.x/ D ex

1 � x

as the EGF of fdngn>0.

Now we can use the convolution formula for EGFs to extract the coefficient of xn

nŠ
in

E.x/. Since ex is the EGF of f1gn>0 and 1
1�x

is the EGF of fnŠgn>0, convolution gives

dn D
s

ex � 1

1 � x

{

xn=nŠ

D
n
X

j D0

 

n

j

!

1 � .n � j /Š D
n
X

j D0

 

n

j

!

.n � j /Š:

A little simplification produces

dn D
n
X

j D0

 

n

j

!

.n � j /Š D
n
X

j D0

nŠ

j Š.n � j /Š
� .n � j /Š D nŠ

n
X

j D0

1

j Š
:

We have found our formula:

dn D nŠ

�
1

0Š
C 1

1Š
C 1

2Š
C � � � C 1

nŠ

�

for n > 0.

The formula could also be written dn D
Pn

j D0.n/j .

Question 134 Explain why.

Combinatorially, .n/0C .n/1 C .n/2C � � � C .n/n counts the total number of permutations

of Œn� of any size. Therefore if we define dn to be the number of permutations of Œn� of any

size, then dn must satisfy the recurrence relation d0 D 1 and dn D ndn�1 C 1 for n > 1.

(See Exercise 15 of Section 2.1 for a combinatorial proof.)
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3.5. Techniques for solving recurrence relations 131

Should I use an OGF or an EGF?

You may be wondering why we chose an OGF in the first and third examples and an EGF

in the second and fourth. It is instructive to swap the choices and see what happens.

In the third example, define H.x/ WD
P

n>0 an
xn

nŠ
as the EGF of fangn>0. Take the

recurrence an D 4an�1 C 1, multiply through by xn�1

.n�1/Š
, and sum over n > 1:

X

n>1

an

xn�1

.n � 1/Š
D
X

n>1

4an�1

xn�1

.n � 1/Š
C
X

n>1

xn�1

.n � 1/Š
: (3.20)

The two sums on the right equal 4H.x/ and ex, respectively. The piece on the left is

interesting because it is the derivative of H.x/:

X

n>1

an

xn�1

.n � 1/Š
D a1 C a2x C a3

x2

2Š
C a4

x3

3Š
C � � �

D d

dx

�

a0 C a1x C a2

x2

2Š
C a3

x3

3Š
C � � �

�

D H 0.x/:

Equation (3.20) now simplifies to

H 0.x/ D 4H.x/C ex

which is a first-order linear ordinary differential equation with constant coefficients. Stan-

dard techniques from introductory differential equations will find H.x/ and then you can

extract the coefficient of xn

nŠ
to get a formula for an. While this is a great illustration of the

intersection of continuous and discrete mathematics, it does require more work than using

the OGF.

In the fourth example, define B.x/ WD
P

n>0 bnxn as the OGF of fbngn>0. Take the

recurrence bn D nbn�1 C 1, multiply through by xn�1, and sum over n > 1.

Question 135 If you attempt this, where do you run into trouble?

As a general rule of thumb, try an OGF on a recurrence relation with constant coefficients,

and an EGF on one that doesn’t have constant coefficients.

Summary

This section provided examples of a method for solving recurrence relations via generating

functions. “Solving” a recurrence relation means finding a closed-form (non-recursive)

formula for the n-th term. The method is as follows.

� Given a sequence fangn>0 defined by a recurrence relation, define g.x/ as either the

OGF or the EGF of the sequence.

� Multiply the recurrence by either xn or xn

nŠ
and then sum over all values of n for which

the recurrence is defined.

� Manipulate the equation in the previous step to get it in terms of the unknown gener-

ating function g.x/. Be sure to use the initial conditions.

� Solve for g.x/ to find the generating function.

� Extract the coefficient of xn or xn

nŠ
to obtain a formula for an.
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132 3. Algebraic Tools

Exercises

1. Solve the following recurrence relations using the generating function technique.

(a) a0 D 0 and an D 2an�1 C 1 for n > 1.

(b) b0 D 1
2

and bn D 3bn�1 � 1
2

for n > 1.

(c) c0 D 1 and cn D 3an�1 C 3n for n > 1.

(d) d0 D 1, d1 D 4, and dn D 4dn�1 � 4dn�2 for n > 2.

(e) e0 D e1 D 1, e2 D 2, and en D 3en�1 � 3en�2 C en�3.

2. Use an EGF to solve the recurrence relation a0 D 2 and an D nan�1 � nŠ for n > 1.

3. Let Dn be the number of derangements of an n-set. (See Section 3.1.) Define D0 D 1

and note D1 D 0.

(a) Give a combinatorial proof: Dn D .n � 1/.Dn�1 CDn�2/ for n > 2.

(b) Find the EGF of fDngn>0.

(c) Use part (b) to find a formula for Dn.

4. Find a formula for the n-th term of the sequence defined by the recurrence relation

En D nEn�1 C .�1/n for n > 1, where E0 D 1. Also, what is the relationship

between En and the Dn of the previous exercise?

5. Let gn equal the number of lists of any length taken from f1; 2; 4g having elements that

sum to n. For example, g3 D 3 because the lists are .1; 2/, .2; 1/, and .1; 1; 1/. Also,

g4 D 6 because the lists are .4/, .1; 1; 2/, .2; 2/, .1; 1; 1; 1/, .1; 2; 1/, and .2; 1; 1/.

Define g0 D 1.

(a) Find each of g1, g2, and g5 by complete enumeration.

(b) Prove that gn D gn�1 C gn�2 C gn�4 for n > 4.

(c) Let G.x/ be the OGF for fgngn>0. Show that G.x/ D 1

1 � x � x2 � x4
.

6. Consider the recurrence relation defined by b0 D 1 and bn D
Pn

iD1
bn�i

i Š
for n > 1.

Let B.x/ be the OGF of fbngn>0. Show that B.x/ D 1
2�ex .

Travel Notes

The reader who is familiar with finding power series solutions to differential equations will

find many similarities with the methods of this section. Indeed, the method we presented

for solving a0 D 1, an D 3an�1 for n > 1 has much in common with the following

derivation of the solution to y0 D 3y, y.0/ D 1. Begin by writing the unknown function y

as the power series

y D
X

n>0

an

xn

nŠ
D a0 C a1x C a2

x2

2Š
C a3

x3

3Š
C a4

x4

4Š
C � � �

whence

y0 D a1 C a2x C a3

x2

2Š
C a4

x3

3Š
C a5

x4

4Š
C � � �

and

3y D 3a0 C 3a1x C 3a2

x2

2Š
C 3a3

x3

3Š
C 3a4

x4

4Š
C � � � :
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3.6. Solving linear recurrence relations 133

Equating coefficients gives a1 D 3a0, a2 D 3a1, a3 D 3a2, and in general an D 3an�1.

The initial condition y.0/ D 1 means a0 D 1 and so we are faced with solving a0 D 1,

an D 3an�1. The solution is an D 3n for n > 0 and so the solution to the differential

equation is

y D
X

n>0

3n xn

nŠ
D
X

n>0

.3x/n

nŠ
D e3x; jxj <1.

3.6 Solving linear recurrence relations

In this section we derive solutions for two types of recurrence relations that arise often

enough to earn a once-and-for-all treatment. The reader wishing to omit the derivations

can just read Theorems 3.6.1 and 3.6.2 in preparation for their later application.

The first type of recurrence relation we solve is one like

c0 D 1

cn D 4cn�1C 1 for n > 1.

It is a first-order linear recurrence relation with constant coefficients. In general, such

recurrence relations are of the form

a0 given

an D ˛an�1 C ˇ for n > 1

where a0; ˛; ˇ are real numbers with ˛ 6D 0. It is first-order because the recurrence for

an only involves the previous term an�1. (Similarly, a first-order differential equation only

involves an unknown function y and its first derivative y0.) It is linear because an can be

written as a linear function of lower-ordered terms.1 It has constant coefficients because ˛

and ˇ are constants that do not depend on the index n. The recurrence dn D ndn�1 C 1

from the last section is linear but does not have constant coefficients.

An example of the second type of recurrence relation that we solve in this section is

the one for the Fibonacci numbers, namely

F0 D 1

F1 D 1

Fn D Fn�1 C Fn�2 for n > 2.

This is a second-order linear recurrence relation with constant coefficients. In general,

such recurrence relations are of the form

a0 given

a1 given

an D ˛an�1 C ˇan�2 C  for n > 2,

where a0; a1; ˛; ˇ;  are real numbers with ˛ 6D 0. In addition if the recurrence has  D 0

(as Fibonacci does) it is called homogeneous.

1A recurrence such as cn D 4cn�1cn�2 C 1 is not linear.
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134 3. Algebraic Tools

First-order linear recurrence relations

Our first goal is to solve the recurrence relation

a0 given

an D ˛an�1 C ˇ for n > 1,

where a0; ˛; ˇ are real numbers with ˛ 6D 0.

Let f .x/ be the OGF of fangn>0. As usual, begin by multiplyingthe recurrence through

by xn and summing over n > 1. This results in

X

n>1

anxn D
X

n>1

˛an�1xn C
X

n>1

ˇxn

or
X

n>1

anxn D ˛x
X

n>1

an�1xn�1 C ˇ
X

n>1

xn:

Now write this in terms of the OGF f .x/ and other known quantities:

f .x/ � a0 D ˛xf .x/C ˇ

�
1

1 � x
� 1

�

D ˛xf .x/C ˇx

1 � x
:

Solve f .x/ � a0 D ˛xf .x/C ˇx=.1 � x/ for f .x/ to get

f .x/ D a0.1 � x/C ˇx

.1 � ˛x/.1 � x/
D a0

1 � ˛x
C ˇx

.1 � ˛x/.1 � x/
: (3.21)

To find a formula for an, just extract the coefficient of xn:

an D
s

a0

1 � ˛x
C ˇx

.1 � ˛x/.1 � x/

{

xn

D a0 �
s

1

1 � ˛x

{

xn

C ˇ �
s

1

.1 � ˛x/.1 � x/

{

xn�1

D a0˛n C ˇ

n�1
X

j D0

˛j � 1

D a0˛n C ˇ

n�1
X

j D0

˛j :

We used the convolution formula for OGFs in the third equality.

This formula for an can be cleaned up a little more using the identity

k
X

j D0

xj D 1 � xkC1

1 � x
: (3.22)

Since the formula works for any real number x with x 6D 1, there are two cases to consider.
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3.6. Solving linear recurrence relations 135

Case 1: ˛ 6D 1

If ˛ 6D 1, then apply equation (3.22) with x D ˛ and k D n � 1 to get
Pn�1

j D0 ˛j D 1�˛n

1�˛
.

In this case, the formula for an is

an D a0˛n C ˇ

�
1 � ˛n

1 � ˛

�

:

Case 2: ˛ D 1

If ˛ D 1, then
Pn�1

j D0 ˛j D
Pn�1

j D0 1 D n. In this case, the formula for an is then

an D a0˛n C ˇn:

We’ve now given a complete answer to the question of how to solve a first-order linear

recurrence relation with constant coefficients.

Theorem 3.6.1 Consider the recurrence relation

a0 given

an D ˛an�1 C ˇ for n > 1,

where a0; ˛; ˇ are real numbers with ˛ 6D 0. The OGF of the sequence fangn>0 is

a0

1 � ˛x
C ˇx

.1 � x/.1 � ˛x/
:

It follows from the OGF that

an D

8

<

:

a0˛n C ˇ

�
1 � ˛n

1 � ˛

�

if ˛ 6D 1

a0˛n C ˇn if ˛ D 1

is a formula for the n-th term of the sequence.

Applying the theorem

For example, to find the 20th term of

a0 D �1

an D
an�1

2
C 3 for n > 1,

just note that ˛ D 1=2 and ˇ D 3. Observing that ˛ 6D 1, we apply the formula to get

a20 D .�1/.1=2/20 C 3

�
1 � .1=2/20

1 � 1=2

�

D � 1

220
C 6

�

1 � 1

220

�

D 6 � 7

220
D 6 � 7

1048576
D 6291449

1048576
:

In general, the n-th term is an D 6 � 7

2n
.

Question 136 Find the n-th term of the recurrence relation a0 D 105, an D an�1 � 1
3

for

n > 1. Also, confirm the formula for the n-th term of c0 D 1, cn D 4cn�1 C 1 for n > 1,

which we derived in Section 3.5.
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136 3. Algebraic Tools

Second-order linear homogeneous recurrence relations

As we mentioned earlier, the recurrence relation that defines the Fibonacci sequence is

an example of a second-order linear homogeneous recurrence relation. In general such a

recurrence relation looks like

a0 given

a1 given

an D ˛an�1 C ˇan�2 for n > 2.

We assume that ˛0; ˛1; ˛; ˇ are real numbers with ˇ 6D 0. Exercise 7 asks you to extend

the work we are about to do to the non-homogeneous case.

Define f .x/ WD
P

n>0 anxn as the OGF of
˚

an

	

n>0
. Multiply through by xn and sum

over n > 2, and then make the usual adjustments to the right-hand side:

X

n>2

anxn D
X

n>2

˛an�1xn C
X

n>2

ˇan�2xn

D ˛x
X

n>2

an�1xn�1 C ˇx2
X

n>2

an�2xn�2:

This equation is equivalent to f .x/�a0�a1x D ˛x
�

f .x/�a0

�

Cˇx2f .x/, and solving

for f .x/ shows that

f .x/ D a0 C .a1 � ˛a0/x

1 � ˛x � ˇx2
: (3.23)

At this point we need to factor the quadratic in the denominator to determine the nature of

its roots. In the case of distinct roots, we’ll use partial fraction decomposition to extract the

coefficients.

Case 1: distinct roots

If the roots are distinct, then it is possible to factor the denominator into the form (remem-

ber ˇ 6D 0)

1 � ˛x � ˇx2 D .1 � r1x/.1 � r2x/

where r1 6D r2. We seek, then, the partial fraction decomposition of

a0 C .a1 � ˛a0/x

1 � ˛x � ˇx2
D A

1 � r1x
C B

1 � r2x
:

Multiplying through by .1 � r1x/.1 � r2x/ shows that

a0 C .a1 � ˛a0/x D A.1 � r2x/C B.1 � r1x/

D .AC B/C
�

� r2A� r1B
�

x

This leads to the system

A C B D a0

�r2A � r1B D a1 � ˛a0:

Its solution is

A D .r1 � ˛/a0 C a1

r1 � r2

and B D a0 �A D � � � D .˛ � r2/a0 � a1

r1 � r2
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3.6. Solving linear recurrence relations 137

Question 137 Solve the system by hand to verify the given values of A and B . At what

point in the calculation does the need to assume r1 6D r2 enter?

Now, go back to the equation (3.23). We just showed that

f .x/ D A

1 � r1x
C B

1 � r2x

where A and B are as we determined earlier. This means that the coefficient of xn in f .x/

is Arn
1 CBrn

2 . Before organizing this information into a theorem, though, we need to treat

the case of repeated roots.

Case 2: repeated roots

In this case, we can factor the denominator into the form

1 � ˛x � ˇx2 D .1 � r1x/2:

Partial fraction decomposition is not necessary. Since

a0 C .a1 � ˛a0/x

1 � ˛x � ˇx2
D a0 C .a1 � ˛a0/x

.1 � r1x/2
;

we can begin by finding the coefficient of xn in 1=.1 � r1x/2. Use the multichoose OGF

as a starting point, namely

1

.1 � x/m
D
X

n>0

  

m

n

!!

xn;

but substitute m D 2 and replace x by r1x to get

1

.1 � r1x/2
D
X

n>0

  

2

n

!!

.r1x/n D
X

n>0

.nC 1/rn
1 xn:

Therefore the coefficient of xn in 1=.1 � r1x/2 is .n C 1/rn
1 . So now, since the OGF of

fangn>0 is

a0 C .a1 � ˛a0/x

.1 � r1x/2
D a0

.1 � r1x/2
C .a1 � ˛a0/x

.1 � r1x/2
;

the formula for an is

an D
s

a0

.1 � r1x/2
C .a1 � ˛a0/x

.1 � r1x/2

{

xn

D
s

a0

.1 � r1x/2

{

xn

C
s

.a1 � ˛a0/x

.1 � r1x/2

{

xn

D a0 �
s

1

.1 � r1x/2

{

xn

C .a1 � ˛a0/ �
s

1

.1 � r1x/2

{

xn�1

D a0.nC 1/rn
1 C .a1 � ˛a0/nrn�1

1 :
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138 3. Algebraic Tools

The whole story

Here’s the theorem that summarizes our work.

Theorem 3.6.2 Consider the recurrence relation

a0 given

a1 given

an D ˛an�1 C ˇan�2 for n > 2,

where a0; a1; ˛; ˇ are real numbers with ˇ 6D 0. The OGF of the sequence fangn>0 is

a0 C .a1 � ˛a0/x

1 � ˛x � ˇx2
:

To determine a formula for an, do the following:

� Factor the quadratic 1 � ˛x � ˇx2 into the form .1 � r1x/.1 � r2x/, for (possibly

complex) numbers r1 and r2.

� If r1 6D r2, then define A D .r1 � ˛/a0 C a1

r1 � r2

and B D .˛ � r2/a0 � a1

r1 � r2

. The for-

mula is an D Arn
1 C Brn

2 for n > 0.

� If r1 D r2, then the formula is an D a0.nC 1/rn
1 C .a1 � ˛a0/nrn�1

1 for n > 0.

Exercise 3 asks you to derive the following formula for the roots of the quadratic 1�˛x�
ˇx2 needed in the first step of the theorem:

r1; r2 D
˛˙

p

˛2C 4ˇ

2
: (3.24)

Applying the theorem

In Section 4.2, we apply Theorem 3.6.2 to find closed-form formulas for both the Fibonacci

and the Lucas numbers. Until then, however, we show how to apply the formula to a slight

modification to the Fibonacci recurrence:

a0 D 1

a1 D 1

an D an�1 � an�2 for n > 2.

The sequence it defines appears pretty innocent. In fact it begins 1; 1; 0;�1;�1; 0 and then

starts over.

The recurrence relation has a0 D a1 D ˛ D 1 and ˇ D �1. Using equation (3.24), the

roots turn out to be distinct but complex:

r1; r2 D
1˙

p

12 C 4.�1/

2
D 1˙ i

p
3

2
:

Next note that r1 � r2 D i
p

3 and so

A D .r1 � ˛/a0 C a1

r1 � r2

D
.1Ci

p
3

2
� 1/.1/C 1

i
p

3
D 1

2

�

1 � ip
3

�
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3.6. Solving linear recurrence relations 139

and

B D .˛ � r2/a0 � a1

r1 � r2

D
.1 � 1�i

p
3

2
/.1/ � 1

i
p

3
D 1

2

�

1C ip
3

�

:

Therefore

an D
1

2

�

1 � ip
3

�
 

1C i
p

3

2

!n

C 1

2

�

1C ip
3

�
 

1 � i
p

3

2

!n

for n > 0.

Summary

In this section we applied the recurrence-relation-solving techniques of the previous sec-

tion to derive general formulas for certain first- and second-order recurrence relations. This

means that a closed form formula is readily available for any combinatorial problem whose

solution can be described by such a recurrence relation.

Exercises

1. Find a30 for the recurrence relation a0 D �1 and an D 1 � 3an�1.

2. Solve the following recurrence relations.

(a) a0 D 3, a1 D 7, and an D 3an�1 � 2an�2 for n > 2.

(b) b0 D 1, b1 D 3, and bn D 4.an�1 � an�2/ for n > 2.

(c) c0 D 2, c1 D 0, and cn D 2cn�1 � 2cn�2 for n > 2.

(d) d0 D 10 and dn D 11dn�1 � 10 for n > 1.

3. Prove that if 1 � ˛x � ˇx2 D .1 � r1x/.1 � r2x/, then r1 and r2 are as given in the

formulas in equation (3.24) on page 138.

4. Find a formula for the n-th term of the sequence defined by the recurrence relation

an D 2an�1 C 3an�2 for n > 2, where a0 D 1 and a1 D 2.

5. Answer the previous exercise but for the initial conditions a0 D �1 and a1 D 0.

Re-use as much as possible your work from the previous exercise.

6. Let tn denote the number of ways to build a tower n units high using blocks of the

following types: red 1-unit blocks, red 2-unit blocks, blue 1-unit blocks, and blue

2-unit blocks. For example, t1 D 2 and t2 D 6. Define t0 D 1.

Derive a recurrence relation for tn and then use it to find a formula for tn.

7. Extend Theorem 3.6.2 to recurrence relations of the form an D ˛an�1 Cˇan�2 C  ,

where  is a given real number and all other parameters are as before.

8. Find lim
˛�!1

1 � ˛n

1 � ˛
. Then, explain why this clarifies the relationship between the for-

mulas for an shown in Theorem 3.6.1.
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C H A P T E R 4

Famous Number Families

In this chapter we apply our tools from the previous chapters to study several well-known

number families: binomial and multinomial coefficients, Fibonacci and Lucas numbers,

Stirling numbers of the first and second kinds, and integer partition numbers. Fibonacci

numbers in particular are so compelling that an entire journal, The Fibonacci Quarterly, is

devoted to their study.

Combinatorial proofs and generating functions are the main tools we’ll use. For each

family, the main goal is to obtain a “nice” formula. The criteria for what constitutes a nice

formula are subjective, but there are some formulas that everyone would agree are nice.

For example, we have seen that the Fibonacci numbers are defined by F0 D 1, F1 D 1,

and Fn D Fn�1 C Fn�2 for n > 2. The formula is

Fn D
1p
5

 

1C
p

5

2

!nC1

� 1p
5

 

1 �
p

5

2

!nC1

for n > 0.

It is easily evaluated for any n and involves only basic arithmetic operations. On the other

hand a formula for P.n/, the total number of partitions of the integer n does indeed exist

but requires a great deal of number theory and complex analysis to understand. Somewhere

in between is one possible formula for the Bell numbers, namely

B.n/ D 1

e

X

j >0

j n

j Š
:

Although it involves an infinite series, it converges rapidly and thus has use as a computa-

tional formula.

4.1 Binomial and multinomial coefficients

We begin with the multinomial coefficients which are generalizations of the binomial co-

efficients. These will help us answer counting questions involving set partitions where the

blocks have specified sizes. We’ll then solve the problem of counting the ways to triangu-

late a regular polygon which requires the so-called extended binomial theorem.

Multinomial coefficients

Think of the binomial coefficient
�
10
4

�

as counting the ways to distribute 10 distinct objects

to two distinct recipients such that recipient A receives four objects and recipient B receives

141
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142 4. Famous Number Families

the remaining six objects. Writing
�

10
4;6

�

instead of just
�

10
4

�

makes explicit the number of

objects each recipient receives.

The multinomial coefficient
�

10
3;4;3

�

counts the ways to distribute 10 distinct objects to

three distinct recipients such that recipient A receives three objects, B receives four, and C

receives three. The numbers on the bottom should sum to the number at the top, else the

value is 0. For example,
�

10
2;3;4

�

D 0 because 2C 3C 4 6D 10.

In general, the multinomial coefficient

 

n

t1; t2; : : : ; tk

!

equals the number of distribu-

tions of n distinct objects to k distinct recipients such that recipient i receives ti objects,

for i 2 Œk�. We observe that
�

n
t1;t2;:::;tk

�

D 0 unless
P

ti D n. We define
�

0
0;0;:::;0

�

WD 1.

Question 138 A gym teacher hands out eight yellow, eight red, and nine blue jerseys to

her 25 students to put them on three different teams. How many ways can this be done?

Formula for the multinomial coefficients

Our first job is to derive a formula for the multinomial coefficients. As an example, how

many distributions of 10 distinct objects to four distinct recipients are possible such that

recipient 1 receives t1 D 3 objects, recipient 2 receives t2 D 0 objects, recipient 3 receives

t3 D 5 objects, and recipient 4 receives t4 D 2 objects?

Consider one of the 10Š permutations of Œ10�, say .7; 10; 3; 2; 1; 6; 4; 9; 8; 5/. Assign the

first t1 D 3 objects in this list to recipient 1, the next t2 D 0 objects to 2, and so on:

.7; 10; 3
„ƒ‚…

!1

; 2; 1; 6; 4; 9
„ ƒ‚ …

!3

; 8; 5
„ƒ‚…

!4

/

But there are many permutations that produce the same distribution because sublists of

size 3, 5, and 2 (really 3, 0, 5, and 2) can be permuted in any way. There are 3Š0Š5Š2Š

permutations equivalent to the distribution

f3; 7; 10g ! recipient 1

; ! recipient 2

f1; 2; 4; 6; 9g ! recipient 3

f5; 8g ! recipient 4

and so by the equivalence principle there are 10Š
3Š0Š5Š2Š

such distributions.

Question 139 Explain why
�

10
3

��
7
0

��
7
5

��
2
2

�

is also a correct answer.

The argument using the equivalence principle generalizes immediately.

Theorem 4.1.1 For any n > 0 and t1; t2; : : : ; tk > 0 with
P

ti D n,

 

n

t1; t2; : : : ; tk

!

D nŠ

t1Št2Š � � � tk Š
:

See Exercise 7 for the proof.

Question 140 How many ways can you distribute 12 different books to three children so

that each child gets four books?
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A combinatorial proof

When we proved Pascal’s identity
�

n
k

�

D
�

n�1
k�1

�

C
�
n�1

k

�

, we counted the number of k-

person committees that can be formed from a group of n people. The corresponding idea

for multinomial coefficients involving three recipients is

 

n

t1; t2; t3

!

D
 

n � 1

t1 � 1; t2; t3

!

C
 

n� 1

t1; t2 � 1; t3

!

C
 

n � 1

t1; t2; t3 � 1

!

as long as each ti > 0. For example
 

10

3; 5; 2

!

D
 

9

2; 5; 2

!

C
 

9

3; 4; 2

!

C
 

9

3; 5; 1

!

:

A combinatorial proof also uses the proof of Pascal’s identity as inspiration: condition on

which of the three recipients receives object 10. If a certain recipient receives zero objects,

then we do not include that recipient in the conditioning.1 For example,

 

10

7; 0; 3

!

D
 

9

6; 0; 3

!

C
 

9

7; 0; 2

!

:

This is because if recipient 2 is to receive zero objects, then the object labeled 10 must be

assigned to either recipient 1 or 3.

Theorem 4.1.2 For any n > 0 and t1; t2; : : : ; tk > 0 with
P

ti D n,

 

n

t1; t2; : : : ; tk

!

D
X

 

n � 1

t1; : : : ; ti�1; ti � 1; tiC1; : : : ; tk

!

where the sum is over all i 2 Œk� for which ti > 0.

Combinatorial proof: Assume that n > 0 and that t1; t2; : : : ; tk > 0 satisfy
P

ti D n.

How many distributions of n distinct objects to k distinct recipients are possible such that

recipient 1 receives t1 objects, recipient 2 receives t2 objects, and so on?

Answer 1: There are
�

n
t1;t2;:::;tk

�

distributions.

Answer 2: Condition on the recipient that receives object n. If this recipient is i (as long

as ti > 0), then there are
�

n�1
t1;:::;ti�1 ;ti �1;tiC1 ;:::;tk

�

such distributions. By the sum principle

there are
P�

n�1
t1;:::;ti�1 ;ti �1;tiC1 ;:::;tk

�

total distributions,where the sum is over all i for which

ti > 0.

The multinomial coefficients count the possible functions Œn� �! Œk� with prescribed

sizes for the pre-image of each element in the codomain. The following theorem results

from considering all possible prescribed sizes and adding the results.

Theorem 4.1.3 For any n > 0 and k > 0,

kn D
X

 

n

t1; t2; : : : ; tk

!

where the sum is over all k-lists .t1; t2; : : : ; tk/ of nonnegative integers that sum to n.

1Equivalently, one could define
�

n
t1;t2;:::;tk

�

WD 0 if any ti < 0.
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144 4. Famous Number Families

Question 141 How many terms are there in the sum?

As an illustration, the number of functions Œ3� �! Œ3� equals

 

3

3; 0; 0

!

C
 

3

0; 3; 0

!

C
 

3

0; 0; 3

!

C
 

3

2; 1; 0

!

C
 

3

2; 0; 1

!

C
 

3

0; 2; 1

!

C
 

3

1; 2; 0

!

C
 

3

1; 0; 2

!

C
 

3

0; 1; 2

!

C
 

3

1; 1; 1

!

D 1C 1C 1C 3C 3C 3C 3C 3C 3C 6 D 27:

And of course 33 D 27 as well.

The multinomial theorem

The multinomial coefficients produce a “multinomial theorem” just as the binomial coef-

ficients produce the binomial theorem. A simple modification to the approach that proved

the binomial theorem in Section 2.2 works here.

Theorem 4.1.4 (multinomial) For any n > 0,

.x1 C x2 C � � � C xk/n D
X

 

n

t1; t2; : : : ; tk

!

x
t1
1 x

t2
2 � � �x

tk
k

where the sum is over all k-lists .t1; t2; : : : ; tk/ of nonnegative integers that sum to n.

Question 142 Provide a combinatorial proof of the multinomial theorem, assuming that

the xj are positive integers.

Counting partitions with certain specifications

How many partitions of Œ20� have three blocks of size 1, three blocks of size 4, and one

block of size 5?

It would seem that the multinomial coefficient
 

20

1; 1; 1; 4; 4; 4; 5

!

D 20Š

.1Š/3.4Š/3.5Š/1
(4.1)

would have something to do with the answer, since it counts the distributions of 20 dis-

tinct objects to seven distinct recipients such that recipients 1-3 each receive one object,

recipients 4-6 each receive four objects, and recipient 7 receives five objects. One example

distribution is
f17g ! recipient 1

f3g ! recipient 2

f11g ! recipient 3

f2; 5; 6; 10g! recipient 4

f1; 7; 19; 20g ! recipient 5

f9; 15; 16; 18g! recipient 6

f4; 8; 12; 13; 14g! recipient 7
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But the set partition derived from this distribution has the blocks

f17g; f3g; f11g; f2; 5; 6; 10g; f1; 7; 19; 20g; f9; 15; 16; 18g; f4; 8; 12; 13; 14g

and so the answer shown in (4.1) above is too large because the recipients are distinct

instead of identical. The equivalence principle comes to the rescue: we may rearrange

the assignment of the blocks of size 1 to the first three recipients in any of 3Š ways, the

assignment of the blocks of size 4 to the next three recipients in any of 3Š ways, and the

assignment of the blocks of size 5 to the last recipient in any of 1Š ways (included to make

the pattern obvious) and end up with an equivalent partition. There are

 

20

1; 1; 1; 4; 4; 4; 5

!
.

3Š3Š1Š D 20Š

.1Š/3.4Š/3.5Š/13Š3Š1Š
D 40;738;698;000

partitions of Œ20� with the blocks as specified, around 40:7 billion.

In general, if a partition of Œn� has pj blocks of size j , where j 2 Œn�, then there are

nŠ

.1Š/p1 .2Š/p2 � � � .nŠ/pn
D nŠ

,
n
Y

j D1

.j Š/pj (4.2)

different partitions in which the blocks of the partition are “labeled” as in the example just

discussed. The size of each equivalence class is p1Šp2Š � � �pnŠ, and so the total number of

partitions of Œn� into blocks with the specified sizes equals the number shown in (4.2) above

divided by the product of the pj Š.

Theorem 4.1.5 For n > 0, the number of partitions of an n-set such that there are pj

blocks of size j , for j 2 Œn�, equals

nŠ

,
n
Y

j D1

.j Š/pj pj Š:

Question 143 In the theorem, what does
Pn

j D1 j � pj always equal?

Example: bridge hands

How many ways are there to arrange a 52-card deck into four piles of 13 cards each? How

many ways are there to deal a 52-card deck to four players so that each player receives 13

cards?

The difference between the two questions lies in whether the recipients are identical

(first question) or distinct (second question). The first question asks for the number of

ways to partition a 52-set into four blocks each of size 13. By Theorem 4.1.5, there are

52Š

.13Š/4 4Š
D 2;235;197;406;895;366;368;301;560;000

ways. Many bridge hands have been played in the history of the world but it is certainly

not the case that every possible partitioning of the deck has been realized.

The second question asks for the number of ways to deal 13 cards to each player. There

are

 

52

13; 13; 13; 13

!

D 53;644;737;765;488;792;839;237;440;000 ways.
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Connection with Stirling and Bell numbers

A link between partitions with specified block sizes and the Stirling numbers of the second

kind or the Bell numbers is possible but somewhat cumbersome. For example, we know

that the number of partitions of Œ4� into two blocks is S.4; 2/. Such a partition must have

either one 1-block and one 3-block, or else two 2-blocks. Applying the theorem with n D 4

and .p1; p2; p3; p4/ D .1; 0; 1; 0/ gives

4Š

.1Š/1.2Š/0.3Š/1.4Š/01Š0Š1Š0Š
D 4:

Applying it with n D 4 and .p1; p2; p3; p4/ D .0; 2; 0; 0/ gives

4Š

.1Š/0.2Š/2.3Š/0.4Š/00Š2Š0Š0Š
D 3:

This shows that S.4; 2/ D 4C 3 D 7.

Question 144 What does the formula give if there is one block of size n? What if there are

n blocks of size 1?

Two more binomial coefficient identities

For the rest of this section we return to the binomial coefficients and first to combinatorial

proofs. The skill in giving a combinatorial proof of an identity lies in asking the right

question. Here are two proofs for which the questions aren’t as obvious as the examples in

Section 2.2 were. In both proofs we use the committee-counting interpretation of
�

n
k

�

.

The following identity holds for any choices of nonnegative integers n, m, and k, but

the restrictions given in the theorem help in the combinatorial interpretation.

Theorem 4.1.6 For any integers n; m; k satisfying n; m > 1 and 0 6 k 6 m,

X

j >0

 

n

j

! 

m

k C j

!

D
 

nCm

nC k

!

:

Combinatorial proof: From a group of n women and m men, how many committees of

size nC k are possible?

Answer 1:
�
nCm
nCk

�

Answer 2: Notice that at least k men must be on any such committee. Condition on

the number j of men on the committee beyond this minimum number k. There are
�

m
kCj

�

ways to select the men. The rest of the committee consists of n � j women, and for each

way to select the men there are
�

n
j

�

ways to select j women to exclude from the committee,

thereby selecting n�j women to include. There are
�

n
j

��
m

kCj

�

possible committees for this

value of j . Summing over all j gives the left-hand side of the identity.

Question 145 If k D 0, then to what does the identity reduce?

We give two proofs of the following identity, one combinatorial and one using the

binomial theorem and the derivative. Pick your favorite.

Theorem 4.1.7 For all n > 1,

n
X

kD1

k

 

n

k

!

D n2n�1.
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Combinatorial proof: Let n > 1. Given n people, in how many ways can we select a

nonempty committee of any size and also designate one person as the chair?

Answer 1: Pick the chair first in one of n ways. Then, pick any subset of the remaining

n � 1 people to form the rest of the committee. There are 2n�1 such subsets, so there are

n2n�1 total selections.

Answer 2: Condition on the size k of the committee, where 1 6 k 6 n. There are
�

n
k

�

possible committees of size k. For each such committee, there are k ways to select its

chair. In total there are
Pn

kD1 k
�

n
k

�

ways.

Proof using the binomial theorem: Since .1C x/n D
Pn

kD0

�
n
k

�

xk , take the derivative to

get

n.1C x/n�1 D
n
X

kD1

k

 

n

k

!

xk�1:

Let x D 1 and the identity follows.

The extended binomial theorem

The extended binomial theorem, sometimes known as the binomial series theorem, gener-

alizes the binomial theorem to the case when the n in .1Cx/n is not a nonnegative integer.

It is a result in analysis and we state it without proof.

Theorem 4.1.8 (extended binomial theorem) For any real number ˛,

.1C x/˛ D
X

k>0

 

˛

k

!

xk; for jxj < 1.

The presence of an infinite sum requires specifying an interval of convergence, in this case

jxj < 1. As usual, when we consider .1C x/˛ as a concise form of the OGF for
˚�

˛
k

�	

k>0
,

the theory of formal power series allows us to finesse this issue.

The only question is: what does
�
˛
k

�

mean when ˛ is not a nonnegative integer? Al-

though there is perhaps no combinatorial significance to associate with it, the same alge-

braic formula still stands:
 

˛

k

!

WD .˛/k

kŠ
where .˛/k WD ˛.˛ � 1/ � � � .˛ � k C 1/.

In other words, just use the formula
�

n
k

�

D .n/k

kŠ
as if n were a nonnegative integer.

Question 146 What is

 

�1=2

4

!

?

Extracting coefficients

What is the coefficient of xk in 1=
p

1 � 4x?

Rewrite and apply the extended binomial theorem:

.1 � 4x/�1=2 D
X

k>0

 

�1=2

k

!

.�4x/k:
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148 4. Famous Number Families

The coefficient is
��1=2

k

�

.�4/k . It is well worth attempting a simplification, for two reasons.

One, the final answer is clean and pretty. Two, the manipulations involved are good to

practice. Start by paring it down:
 

�1=2

k

!

.�4/k D
.�1

2
/.�3

2
/.�5

2
/ � � � .�2k�1

2
/.�4/k

kŠ

D .1/.3/.5/ � � � .2k � 1/.�1/k.�4/k

2kkŠ

D .1/.3/.5/ � � � .2k � 1/2k

kŠ
:

Now comes an algebraic stunt: multiply the last expression by kŠ
kŠ

. Notice that

2kkŠ D 2k.1/.2/.3/ � � � .k/ D .2/.4/.6/ � � � .2k/;

and so the numerator of the expression becomes .2k/Š, i.e.,

.1/.3/.5/ � � � .2k � 1/2k

kŠ
� kŠ

kŠ
D .2k/Š

kŠkŠ
D
 

2k

k

!

:

Therefore .1 � 4x/�1=2 is the OGF of the sequence
˚�

2k
k

�	

k>0
.

Triangulating a regular polygon with n sides

In how many different ways may we triangulate a regular polygon with n sides (an “n-

gon”) with labeled vertices? (A triangulation divides the polygon into triangular regions

via the addition of non-intersecting diagonals.)

Call this number Tn. The triangle has T3 D 1 triangulation and the square has T4 D 2

triangulations:
1 2

34

1 2

34

Also, the pentagon has T5 D 5 triangulations:

5

1

2

34

5

1

2

34

5

1

2

34

5

1

2

34

5

1

2

34

Focus on any one side of the n-gon, say joining vertices 1 and 2. In any triangulation,

that side will form one side of a triangle. Consider cases depending on the location of the

third vertex of that triangle. There are six cases for an octagon:

1 2

3

4

8

7

6 5

1 2

3

4

8

7

6 5

1 2

3

4

8

7

6 5

1 2

3

4

8

7

6 5

1 2

3

4

8

7

6 5

1 2

3

4

8

7

6 5
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If the third corner is labeled 8, then triangulate the remaining 7-sided figure (with corners

at 2-3-4-5-6-7-8) in T7 ways. If the third corner is labeled 7, then triangulate 1-7-8 in T3

ways and 2-3-4-5-6-7 in T6 ways, for a total of T3T6 triangulations. If the third corner is

labeled 6, then triangulate 1-6-7-8 in T4 ways and 2-3-4-5-6 in T5 ways, for a total of T4T5

triangulations. Continuing this produces

T8 D T7 C T3T6 C T4T5 C T5T4 C T6T3 C T7:

In general, the same idea gives

Tn D Tn�1 C T3Tn�2 C T4Tn�3 C � � � C Tn�2T3 C Tn�1:

for n > 4. By defining T2 WD 1 we can write instead

Tn D
n�1
X

kD2

TkTn�kC1 for n > 3, where T2 WD 1. (4.3)

This is a nonlinear recurrence relation, but the techniques of Section 3.5 still work.

Let f .x/ D
P

n>2 Tnxn�2 be the OGF of fTngn>2. That is, Tn is the coefficient of

xn�2 in f .x/. (The discrepancy between the index n and the power n � 2 makes the

algebra come out somewhat cleaner.)

Multiply equation (4.3) by xn�2 and sum over n > 3:

X

n>3

Tnxn�2 D
X

n>3

 
n�1X

kD2

TkTn�kC1

!

xn�2: (4.4)

The left-hand side is f .x/ � T2 D f .x/ � 1. The right-hand side is a convolution that

appears to be something close to Œf .x/�2. Write out a few terms and see:

T2T2x C .T2T3 C T3T2/x2 C .T2T4 C T3T3 C T4T2/x3 C � � �

D x
�

T2T2 C .T2T3 C T3T2/x C .T2T4 C T3T3 C T4T2/x2 C � � �
�

D x
�

f .x/
�2

:

And so equation (4.4) becomes f .x/ � 1 D x
�

f .x/
�2

or

x
�

f .x/
�2 � f .x/C 1 D 0:

Now (more magic with generating functions!) solve this equation for the unknown function

f using the quadratic formula:

f .x/ D �.�1/˙
p

.�1/2 � 4.x/.1/

2x
D 1˙

p
1 � 4x

2x
:

Apply the extended binomial theorem to
p

1 � 4x to get

.1 � 4x/1=2 D
X

n>0

 

1=2

n

!

.�4/nxn:
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But the sum for f .x/ is over n > 2, so

f .x/ D 1

2x
˙ 1

2x

p
1 � 4x D 1

2x
˙ 1

2x

X

n>2

 

1=2

n

!

.�4/nxn

D 1

2x
˙
X

n>2

1

2

 

1=2

n

!

.�4/nxn�1:

Depending on which solution we take,

Tn D ˙
1

2

 

1=2

n� 1

!

.�4/n�1 (4.5)

since (remember!) Tn is the coefficient of xn�2 in f .x/. Exercise 14 asks you to show that

the negative solution is the one we want, and also that it simplifies to

Tn D
1

n� 2

 

2n� 4

n� 1

!

for n > 3. (4.6)

Summary

This section covered extensions of the binomial coefficients and the binomial theorem.

Both the multinomial coefficients and the multinomial theorem extend the binomial coef-

ficients and binomial theorem, respectively, in a natural, combinatorial way. The extended

binomial theorem represents an analytic extension of the binomial theorem. We used it to

solve a nonlinear recurrence relation.

Exercises

1. The pro football season lasts 16 games. The list WWLTWWWWLWWWLLTW is

the record of a team that won its first two games, lost its third, tied its fourth, etc., and

finished with a record of 10-4-2 (10 wins, four losses, two ties).

(a) How many ways are there for a team to finish 10-4-2?

(b) How many ways in part (a) do not have consecutive losses?

(c) How many ways in part (a) have a longest winning streak of six games?

2. Consider the letters in the word DIVISIBILITY.

(a) How many different 12-lists can be formed by rearranging the letters?

(b) How many 12-lists in part (a) do not contain adjacent Is?

3. A university has 120 incoming freshman that still have to be assigned to on-campus

housing. The only remaining dorm holds 105 students and contains 42 doubles (rooms

housing two students) and seven triples (three students). In how many ways can the

university select 105 students to house in this dorm and then arrange those students

into roommate pairs and triples, without yet assigning them to rooms?

4. In the previous exercise, suppose the university gets approval to house temporarily

the remaining 15 students among the dorm’s three lounges. Each lounge will house

five students. How many ways are there for the university to assign all 120 students to

rooms?
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5. A mouse that lives in a hotel wants to travel from the ground floor entrance at location

.0; 0; 0/ to its nest on the 10th floor at location .12; 9; 10/. Each move the mouse

makes is either one room north, one room east, or one floor up. For example, from

.0; 0; 0/ the mouse moves either to .1; 0; 0/ or .0; 1; 0/ or .0; 0; 1/, respectively. How

many ways are there for the mouse to travel?

6. Suppose jAj D 42. How many equivalence relations on A are there that have distinct

equivalence classes of sizes 4, 7, 7, 8, 8, and 8?

7. Use the equivalence principle to prove the formula for the multinomial coefficients

given in Theorem 4.1.1.

8. Give a combinatorial proof:

n
X

kDm

 

n

k

! 

k

m

!

D
 

n

m

!

2n�m.

9. Give a combinatorial proof:

 

kn

2

!

D k

 

n

2

!

C n2

 

k

2

!

.

10. Give two proofs of the following, one combinatorial and one non-combinatorial: For

n > 2, n.n � 1/2n�2 D
X

k>2

k.k � 1/

 

n

k

!

.

11. Compute

n
X

kD0

 

2n� 2k

n� k

! 

2k

k

!

for n D 0; 1; 2; 3. Make a conjecture and then prove

it combinatorially.

12. Given a positive integer n, a composition of n is a list of positive integers that sum to

n. For example, .3; 1; 1/ and .1; 3; 1/ and .1; 4/ and .5/ are each a composition of 5.

In general, how many compositions of n are possible?

13. Find the coefficient of xn in
p

1 � 8x.

14. Finish the demonstration of formula (4.6). Be sure to justify why the negative solution

in equation (4.5) is the correct one.

15. The associative property of multiplication says that x.yz/ D .xy/z. In other words,

to compute the product xyz you could either find yz first then multiply that by x,

or you could find xy first and then multiply that by z. Thus there are two ways to

compute a product of three numbers via pairwise products and without changing the

order of the numbers.

There are five ways to do this with a product of four numbers:

w.x.yz// w..xy/z/ .wx/.yz/ .w.xy//z ..wx/y/z

Let an equal the number of ways to do this with a product of n numbers. We just

found that a3 D 2 and a4 D 5.

Derive a recurrence relation for an and then solve it to find a formula for an.

16. Define
˚

n
k

	

as the number of .nC k/-lists of the form .a1; a2; : : : ; anCk/ where n of

the elements are 1s and k of the elements are �1s and where for all i , the sum of the

first i entries is nonnegative:

a1 C a2 C � � � C ai > 0 for all i 2 ŒnC k�.
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(a) Find
n

3
2

o

and
n

4
4

o

by complete enumeration. Also, explain why
˚

n
k

	

D 0 when

k > n.

(b) Find
˚

n
0

	

for n > 0 and
˚

n
1

	

for n > 1.

(c) Give a combinatorial proof:
˚

n
k

	

D
˚

n
k�1

	

C
n

n�1
k

o

. Also, for what values of n

and k is this identity valid?

(d) Prove that
˚

n
n

	

D
˚

n
n�1

	

for n > 1.

(e) Compute a table of the values
˚

n
k

	

for k and n satisfying 0 6 k 6 n 6 8.

Travel Notes

The paper Pólya (1956), entitled “On picture-writing,” is a classic exposition by the master

problem-solver George Pólya. In it he explains how generating functions can be easily

derived from symbolic series (as we did at the beginning of Section 3.3) and also solves

the problem of counting triangulations of the regular n-gon that we covered in this section.

Exercise 16 is from “Counting arrangements of 1’s and �1’s” by D. F. Bailey which

appeared in Mathematics Magazine 69, April 1996, 128-131. His purpose was to provide

a new derivation of the formula 1
nC1

�
2n
n

�

for the n-th Catalan number.

4.2 Fibonacci and Lucas numbers

The following recurrence relation defines the well-known Fibonacci numbers:

F0 D 1

F1 D 1

Fn D Fn�1 C Fn�2 for n > 2.

The first few Fibonacci numbers are shown below.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fn 1 1 2 3 5 8 13 21 34 55 89 144 233 377

The same recurrence but with one change in the initial conditions defines the Lucas num-

bers:

L0 D 2

L1 D 1

Ln D Ln�1 C Ln�2 for n > 2.

And the first few Lucas numbers are shown below.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ln 2 1 3 4 7 11 18 29 47 76 123 199 322 521

Both the Fibonacci and Lucas numbers (though the Fibonacci more so) are quite celebrated

in mathematics and elsewhere. This section mainly concentrates on the Fibonacci numbers

but look to the exercises for results about the Lucas numbers.
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Combinatorial interpretations of the Fibonacci numbers

Tiling the n-board

One way to make combinatorial sense of the Fibonacci numbers is to think of them as

answers to certain questions of tiling. This interpretation is particularly concrete and con-

venient.

Consider a 1�n checkerboard (or “n-board”), with its squares labeled 1 through n, and

an unlimited number of two types of tiles: 1 � 1 squares (“1-tiles”) and 1 � 2 rectangles

(“2-tiles”).

1 2 3 … n

…

1-tile 2-tilen-1

In how many ways may we tile the n-board using these two types of tiles?

For example, there are five ways to tile the 4-board:

There are eight ways to tile the 5-board:

There is only one way to tile the 1-board, and we will say that there is one way to tile

the 0-board (using the “empty tiling”). Although we think of the squares of the board as

labeled in increasing order from left to right, the pictures of tilings do not include those

labels unless needed for clarity.

Question 147 Write out all of the tilings of the 3-board and of the 6-board.

That the Fibonacci numbers count such tilings follows naturally. Let tn denote the

number of tilings of the n-board. We don’t know yet that tn D Fn so we had better use

different notation.2 We already know that t0 D t1 D 1. For the n-board with n > 2,

condition on the right-most tile. If it is a 1-tile, then there are tn�1 ways to tile the .n� 1/-

board to its left. If it is a 2-tile, then there are tn�2 ways to tile the .n� 2/-board to its left.

An illustration follows.

If the right-most tile is a 1-tile...

...there are ways to tile

the rest of the board.

tn-1

1 2 … n

…

n-1

If the right-most tile is a 2-tile...

...there are ways to tile

the rest of the board.

tn-2

n-21 2 … n

…

n-1n-2

2This is not just a matter of style but rather important!
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154 4. Famous Number Families

The sum principle then implies that tn D tn�1 C tn�2.

Since the sequence ftngn>0 satisfies the same initial conditions and the same recurrence

as the Fibonacci sequence fFngn>0, those two sequences must be equal and so we can

dispense with the tn notation.

Theorem 4.2.1 For n > 0, the n-th Fibonacci number Fn equals the number of ways to

tile a 1 � n checkerboard using only 1 � 1 and 1 � 2 tiles.

Walking in the n-honeycomb

You are at the cell labeled 0 in the n-honeycomb shown below:

…

…1 3 5

2 4 60

nn–2

n–1

Your goal is to walk to the cell labeled n and you can only make one of two moves: from

cell k to cell kC 1, or from cell k to cell kC 2. Let wn be the number of ways that you can

walk to cell n using moves of this type. The above diagram of the n-honeycomb assumes

that n is odd. If n is even then it looks as follows:

…

…1 3 5

2 4 60 nn–2

n–3 n–1

In either case, since you begin at cell 0 there is one way to get there: do nothing. So w0 D 1.

Also, there is one way to get from cell 0 to cell 1, so w1 D 1.

Question 148 How many ways are there to walk from cell 0 to cell 5? Write them all out.

When n > 2, any path from cell 0 to cell n must either end with a move from cell n� 1 to

cell n, or a move from cell n � 2 to cell n. In the first case, there are wn�1 ways to walk

from 0 to n � 1. In the second case, there are wn�2 ways to walk from 0 to n � 2. By the

sum principle, wn D wn�1 C wn�2.

Again, the numbers wn satisfy the same initial conditions and recurrence as the Fi-

bonacci numbers, so they must be equal.

Theorem 4.2.2 For n > 0, the n-th Fibonacci number Fn equals the number of paths from

0 to n in the n-honeycomb, where each move is k ! k C 1 or k ! k C 2.

Combinatorial proofs

Let’s now survey some of the identities that result from the two combinatorial interpreta-

tions (tiling and walking in the honeycomb) of the Fibonacci numbers.

Conditioning on the number of 1-tiles

Any tiling of the n-board must end with a certain number of 1-tiles, between 0 and n.

Conditioning on this number allows us to derive a basic identity.

For example, any tiling of the 8-board must fall into one of the eight categories shown

in Figure 4.1. The first category includes all tilings that end with no 1-tiles, the second

includes all tilings that end with exactly one 1-tile, and so on. Notice that no tiling can end

with exactly seven 1-tiles, and so the last category contains the one tiling that ends with
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ends with exactly zero 1-tiles

...one 1-tile

...two 1-tiles

...three 1-tiles

...four 1-tiles

...five 1-tiles

...six 1-tiles

...eight 1-tiles

Figure 4.1. Tilings of the 8-board.

exactly eight 1-tiles—the all-1-tile tiling. There are F6 ways to complete the tilings in the

first category, F5 ways in the second, and so on. This proves that

F8 D 1C F0 C F1 C F2 C � � � C F6:

For the general case, any tiling of the n-board must either contain all 1-tiles, or else

end with exactly i of the 1-tiles, where 0 6 i 6 n � 2. There is one tiling in the first case

and there are
Pn�2

iD0 Fi in the second. We have our first Fibonacci identity.

Theorem 4.2.3 For any n > 2, the identity Fn D 1C
n�2
X

iD0

Fi holds.

Alternatively, the identity could be written Fn�1 D
Pn�2

iD0 Fi and proved combinatorially

by asking the question: how many tilings of the n-board use at least one 2-tile? Exercise 2

asks you to prove its sister identity by conditioning on the number of 2-tiles at the end of

the tiling.

A link with binomial coefficients

A list taken from Œ2� provides a concise way to represent a tiling of the n-board. For ex-

ample, the list representations of the eight tilings of the 5-board shown appear in Figure

4.2. This produces a natural one-to-one correspondence between the tilings of the 5-board

using 1- and 2-tiles, and the lists (of any length) taken from Œ2� that have the sum of their

elements equal to 5.

In general, a one-to-one correspondence exists between the tilings of the n-board using

1- and 2-tiles, and the lists taken from Œ2� that have the sum of their elements equal to n. To

prove it, condition on the number of 2-tiles used in the tiling. This number, call it i , ranges

from 0 to bn=2c.
Question 149 Why do we need to round down?
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(1, 1, 1, 1, 1)

(1, 1, 1, 2)

(1, 1, 2, 1)

(1, 2, 1, 1)

(2, 1, 1, 1)

(1, 2, 2)

(2, 1, 2)

(2, 2, 1)

Figure 4.2. Tilings as lists taken from Œ2�.

If the tiling contains i of the 2-tiles, then these tiles occupy 2i of the n squares on the board.

The remaining n � 2i squares must be covered by 1-tiles, which puts the total number of

tiles in the tiling at iC .n�2i/ D n� i . That means that the tiling can be represented as an

.n� i/-list taken from Œ2�, and where the number of 2s in the list is i . There are
�
n�i

i

�

such

lists. Summing over the possible values of i finishes the proof of the following identity.

Theorem 4.2.4 For any n > 0, the identity Fn D
bn=2c
X

iD0

 

n � i

i

!

holds.

It is perhaps more elegant to write the identity as

Fn D
X

i>0

 

n � i

i

!

because
�
n�i

i

�

D 0 for i > bn=2c. For example,

X

i>0

 

5 � i

i

!

D
 

5

0

!

C
 

4

1

!

C
 

3

2

!

C
 

2

3

!

C
 

1

4

!

C � � �

D 1C 4C 3C 0C 0C � � �
D 8

and indeed F5 D 8.

Breaking a tiling

Let n > 2 and consider any tiling of the n-board. Consider what happens between squares

k and k C 1, where 1 6 k < n. Either a single 2-tile covers both of these squares or it

doesn’t. See Figure 4.3 for an illustration.

If a single 2-tile does not cover squares k and k C 1, then we can “break” the tiling at

that point and count such tilings as follows. There are Fk ways to tile the k-board to the

left of the break, and for each way to do so there are Fn�k ways to tile the .n � k/-board

to the right. The product principle gives FkFn�k total tilings in this case.

If a single 2-tile covers squares k and kC1, then we may break the tiling before square

k and after square k C 1. There are Fk�1 tilings of the left-hand board that remains, and
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… …… …

… nk1 …

A 2-tile does not cover squares andk k +1:

A 2-tile covers squares andk k +1:

… nk–1 k k +1 k +21 …

… …… …

k–1 k +1 k +2

Figure 4.3. Breaking a tiling near square k.

for each such tiling there are Fn�k�1 tilings of the right-hand board. Again the product

principle gives Fk�1Fn�k�1 total tilings in this case.

Add the results of the two cases and you get the following theorem.

Theorem 4.2.5 For any n and k satisfying n > 2 and 1 6 k < n, the identity

Fn D FkFn�k C Fk�1Fn�k�1

holds.

Parity and the honeycomb

Consider the paths from 0 to 11 in the 11-honeycomb:

1 3 5

2 4 60 8 10

7 9 11

One of the cells labeled 0, 2, 4, 6, 8, and 10 must be the last even-numbered cell visited.

Arrange all the possible paths into disjoint piles according to the last even cell visited.

Say 6 is the last even cell visited. There are F6 ways to get to 6, but then only one way

to complete the path to 11: it must go 6! 7! 9! 11 because such a path must not visit

any more even cells. Likewise if 8 is the last even cell visited, there are F8 ways to get to

8 but then only one way to complete the path to 11: 8! 9! 11.

So if j is the last even cell visited (j D 0; 2; 4; 6; 8), then there are Fj possible paths.

Since our cases are disjoint and exhaustive, the sum principle implies that

F11 D F0 C F2 C F4 C F6 C F8 C F10:

This essentially gives a proof of the following theorem.

Theorem 4.2.6 For all n > 0, the identity F2nC1 D
n
X

iD0

F2i holds.

We should not go on before trying to swap “even” with ”odd.” Look instead at the

12-honeycomb:

1 3 5

2 4 60 8 10

7 9 11

12
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By considering cases based on the last odd cell visited, you might think that the analogous

identity is

F12 D F1 C F3 C F5 C F7 C F9 C F11:

But this isn’t quite right.

Question 150 Why not? What adjustment must you make and why?

You should now have an idea about how to prove the following theorem.

Theorem 4.2.7 For all n > 1, the identity F2n D 1C
n
X

iD1

F2i�1 holds.

Algebraic proofs

Suppose you suspect a certain identity about Fibonacci numbers is true but can’t find a

combinatorial proof? You could try an algebraic proof, say by induction. Two examples

follow.

A Fibonacci identity

Although a combinatorial proof is possible of the following theorem, we give a proof by

strong induction for variety’s sake.

Theorem 4.2.8 For n > 2, the identity 2Fn D FnC1 C Fn�2 holds.

Proof: Our proof is by strong induction on n. When n D 2, 2F2 D 2.2/ D 4 and F3CF0 D
3C 1 D 4. When n D 3, 2F3 D 2.3/ D 6 and F4CF1 D 5C 1 D 6. The equation is true

both when n D 2 and n D 3.

Now let k > 3 and assume that the identity is true when n D j for all integers j

satisfying 2 6 j 6 k. In particular, this means that

2Fk D FkC1 C Fk�2

2Fk�1 D Fk C Fk�3:

We must show that the equation is true for n D k C 1, namely 2FkC1 D FkC2 C Fk�1.

Starting with 2FkC1, use the Fibonacci recurrence to write

2FkC1 D 2
�

Fk C Fk�1

�

D 2Fk C 2Fk�1:

Now, apply the inductive hypothesis to each term and then apply the Fibonacci recurrence

to show

2Fk C 2Fk�1 D
�

FkC1 C Fk�2

�

C
�

Fk C Fk�3

�

D
�

FkC1 C Fk

�

C
�

Fk�2 C Fk�3

�

D FkC2 C Fk�1:

Therefore the equation is true for all n > 2.

Question 151 What is the need for checking two base cases, n D 2 and n D 3? Why

wouldn’t a single base case suffice?
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The link between Fibonacci and Lucas numbers

The Fibonacci and Lucas numbers obey the same recurrence, so one might think that a

close relationship exists between the two. The following theorem confirms this.

Theorem 4.2.9 For all n > 2, Ln D Fn�2 C Fn.

Proof: Our proof is by strong induction on n. When n D 2, the equation reads L2 D
F0 C F2. Since L1 D 3 and F0 C F2 D 1C 2 D 3 it is true for n D 2. When n D 3, the

equation reads L3 D F1CF3. This also is true because L3 D 4 and F1CF3 D 1C3 D 4.

Now assume that k is an integer, k > 3, and that the equation is true for n D j where

2 6 j 6 k. In particular, this means that

Lk D Fk�2 C Fk

Lk�1 D Fk�3 C Fk�1:

We must show that the equation is true for n D k C 1, namely LkC1 D Fk�1 C FkC1.

Starting with LkC1 and then applying the Lucas recurrence, inductive hypothesis, and

Fibonacci recurrence shows that

LkC1 D Lk CLk�1

D .Fk�2 C Fk/C .Fk�3 C Fk�1/

D .Fk�2 C Fk�3/C .Fk C Fk�1/

D Fk�1 C FkC1:

Therefore the equation is true for all n > 2.

Exercise 11 asks for a combinatorial proof.

Formulas

For the Fibonacci numbers

Is it possible to “jump” right to the n-th Fibonacci number without computing all the pre-

vious numbers using the recurrence relation, or without computing a sum of binomial co-

efficients using Theorem 4.2.4? Theorem 3.6.2 on page 138 tells us that the answer is yes.

To apply the theorem, we set ˛ D ˇ D a0 D a1 D 1.

Question 152 According to that theorem, what is the OGF of fFngn>0?

To find a formula for Fn we must find r1 and r2 so that

1 � x � x2 D .1 � r1x/.1 � r2x/:

Since .1 � r1x/.1 � r2x/ D 1 � .r1 C r2/x C r1r2x, it must be the case that r1 C r2 D 1

and r1r2 D �1. A solution to these two equations in two unknowns is

r1 D
1C
p

5

2
and r2 D

1 �
p

5

2
:

Question 153 What would the values of r1 and r2 be if the quadratic were 1 � 2x � 3x2

instead of 1 � x � x2?
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We are in the case of distinct roots (r1 6D r2), so we need to compute A and B as in the

theorem. You should get

A D 1C
p

5

2
p

5
and B D �1C

p
5

2
p

5
:

That means that

Fn D Arn
1 C Brn

2

D
 

1C
p

5

2
p

5

! 

1C
p

5

2

!n

C
 

�1C
p

5

2
p

5

! 

1 �
p

5

2

!n

:

A little algebraic adjustment (factor out 1=
p

5 and then absorb what’s left into the powers

of r1 and r2) produces the formula of the following theorem.

Theorem 4.2.10 (Fibonacci numbers) The Fibonacci numbers fFngn>0, which are de-

fined by F0 D F1 D 1 and Fn D Fn�1CFn�2 for n > 2, have OGF equal to 1=.1�x�x2/.

From this,

Fn D
1p
5

 

1C
p

5

2

!nC1

� 1p
5

 

1 �
p

5

2

!nC1

for all n > 0.

This formula is beautiful and miraculous, perhaps because it describes an integer sequence

using a sum of powers of irrational numbers.

From a computational point of view, it is not necessary to calculate the second term in

the formula. This is because it is always less than 1
2

in absolute value.

Question 154 Explain why

ˇ
ˇ
ˇ
ˇ

1p
5

�
1�

p
5

2

�nC1
ˇ
ˇ
ˇ
ˇ

< 1
2

, for all n > 0.

As such, Fn is always the closest integer to the first term of the formula.

Corollary 4.2.11 The n-th Fibonacci number is the closest integer to 1p
5

�
1C

p
5

2

�nC1

.

For the Lucas numbers

To obtain a formula for the Lucas numbers, we take the same approach but use L0 D 2

instead of F0 D 1.

Theorem 4.2.12 (Lucas numbers) The Lucas numbers fLngn>0, which are defined by

L0 D 2, L1 D 1, and Ln D Ln�1 C Ln�2 for n > 2, have OGF equal to .2 � x/=.1 �
x � x2/. From this,

Ln D
 

1C
p

5

2

!n

C
 

1 �
p

5

2

!n

for all n > 0.

Question 155 Prove this theorem.

Question 156 Determine whether a result similar to Corollary 4.2.11 holds for the Lucas

numbers.
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Summary

This section barely scratched the surface of the many, many known results concerning the

Fibonacci and Lucas numbers. Several combinatorial interpretations of each number family

exist. The benefit of having many different interpretations is that they each inspire different

identities. To complement the combinatorial methods, the algebraic techniques of induction

and generating functions provided other identities as well as closed-form formulas for both

the Fibonacci and Lucas numbers.

Exercises

1. Express the answer to each question in terms of the Fibonacci numbers.

(a) How many subsets of Œn� do not contain consecutive integers?

(b) How many n-digit binary numbers do not contain adjacent 0s?

(c) How many ways are there to climb a flight of n stairs where each step takes you

from stair i to either stair i C 1 or stair i C 2.

(Hint: Derive a recurrence in each case.)

2. Derive and prove an identity similar to that of Theorem 4.2.3 by conditioning on the

number of 2-tiles at the end of the tiling.

3. Suppose you make a mistake in computing the Fibonacci sequence by hand using the

recurrence. You compute the numbers F0; F1; : : : ; Fm�1 correctly, but your value of

Fm actually equals 1 C Fm. Assuming that this is the only mistake you make, how

far off is each subsequent number that you compute? Specifically, for any k > 0, how

large is the error between your value of FmCk and the true value of FmCk?

4. Prove: gcd.Fn; Fn�1/ D 1 for all n > 1. In other words, adjacent Fibonacci numbers

are relatively prime.

5. Prove Theorem 4.2.4 by strong induction.

6. Prove by strong induction.

(a) 3Fn D FnC2 C Fn�2 for n > 2.

(b) 4Fn D FnC2 C Fn C Fn�2 for n > 2.

7. Prove by strong induction: for any n > 0,
Pn

kD0 F 2
k
D FnFnC1.

8. Prove: for n > 1, F 2
n � FnC1Fn�1 D .�1/n.

9. Given nonnegative integers G0 and G1, the generalized Fibonacci numbers are then

defined by the recurrence Gn D Gn�1 CGn�2 for n > 2. State and prove a theorem,

analogous to Theorems 4.2.10 and 4.2.12, for the generalized Fibonacci numbers.

10. The Lucas numbers count tilings of the circular n-board or n-bracelet with 1- and

2-tiles. A tiling of the 8-bracelet appears below.
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1

2

3

45

8

7

6

The “clasp” at the top is the line dividing squares 8 and 1. In general, if a single 2-tile

covers both squares n and 1, we consider the tiling to correspond to a closed bracelet.

Otherwise the tiling corresponds to an open bracelet.3 The tiling above is closed.

(a) Write out all of the tilings of the 3-, 4-, and 5-bracelets. Which tilings are open

and which are closed?

(b) Let ˇn equal the number of tilings of the n-bracelet. Prove that ˇn D Ln for all

n > 0. How are you defining the initial conditions and how do they make sense

combinatorially?

(c) Explain combinatorially why Ln > Fn for all n > 0.

11. Give a combinatorial (tiling) proof of Theorem 4.2.9.

12. Conjecture and prove formulas for each of the following sums of Fibonacci numbers.

(a)

n
X

iD0

F3i

(b)

n
X

iD0

F4i

Travel Notes

Some authors define the Fibonacci numbers as f0 D 0, f1 D 1, and fn D fn�1 C fn�2

for n > 2. You should be aware of which convention is in force before reading.

There are many combinatorial problems whose answer involves the Fibonacci numbers

(see Exercise 1 for some), so there are many ways to interpret these numbers. The tiling

interpretation of Fibonacci and Lucas numbers originally appeared in Brigham, Caron,

Chinn & Grimaldi (1996). The book by Benjamin & Quinn (2003) offers an excellent and

extensive presentation of combinatorial proofs for Fibonacci and Lucas identities using the

tiling interpretation. The honeycomb interpretation is due to Danrun Huang and Kyung

H. Sun at St. Cloud State University but has not yet been published.

4.3 Stirling numbers

In this section we determine generating functions for the Stirling and Bell numbers and

then derive a formula for the Bell numbers. Also, we introduce the Stirling numbers of the

first kind and then provide both their algebraic and combinatorial interpretations.

3Some authors use “in phase” to mean “open” and “out of phase” to mean “closed.”
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4.3. Stirling numbers 163

From our work in Sections 2.3 and 3.1, we already know the following facts about

Stirling numbers of the second kind and Bell numbers.

� The Stirling number of the second kind S.n; k/ counts the partitions of an n-set into

k blocks. Equivalently, it counts the distributions of n distinct objects to k identical

recipients such that each recipient receives at least one object. The numbers S.n; k/

satisfy the recurrence

S.n; k/ D S.n � 1; k � 1/C k � S.n � 1; k/ for n > 0 and k > 0,

where S.0; 0/ WD 1 and S.n; 0/ D S.0; k/ D 0 for n > 0 and k > 0. We derived this

by conditioning on whether element n is in a block by itself. (This is Theorem 2.3.1

on page 70.)

� We used inclusion-exclusion to find a formula for S.n; k/. For n > 0 and k > 0,

S.n; k/ D 1

kŠ

k
X

iD0

 

k

i

!

.�1/i .k � i/n:

(This is Theorem 3.1.4 on page 90.)

� The Bell number B.n/ counts the total number of partitions of an n-set. As such,

B.n/ D
Pn

kD1 S.n; k/ and B.0/ WD 1. The numbers B.n/ satisfy the recurrence

B.n/ D
n�1
X

j D0

 

n� 1

j

!

B.j / for n > 0.

(This is Theorem 2.3.3 on page 71.)

Generating functions

Stirling numbers of the second kind

Our first order of business is to determine generating functions for the Stirling and Bell

numbers. For the Stirling numbers, which depend on two parameters n and k, we will fix

k and compute the OGF of the sequence
˚

S.n; k/
	

n>0
.

So, fix any k > 0 and define

fk.x/ WD
X

n>0

S.n; k/xn

to be the OGF we want. The k D 0 case is easy and also provides a basis for the k > 0

case:
f0.x/ D

X

n>0

S.n; 0/xn

D S.0; 0/C S.1; 0/x C S.2; 0/x2 C � � �
D S.0; 0/

D 1:

When k > 0 we start with the recurrence given at the beginning of this section, multiply

by xn, and sum over n > 1 to get
X

n>1

S.n; k/xn D
X

n>1

S.n � 1; k � 1/xn C
X

n>1

k � S.n � 1; k/xn: (4.7)
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Let’s analyze each term. The left-hand term equals fk.x/ because S.0; k/ D 0 for k > 0:

X

n>1

S.n; k/xn D S.1; k/x C S.2; k/x2 C S.3; k/x3 C � � �

D S.0; k/C S.1; k/x C S.2; k/x2 C S.3; k/x3 C � � �
D fk.x/:

The middle term equals xfk�1.x/:

X

n>1

S.n � 1; k � 1/xn D x
X

n>1

S.n � 1; k � 1/xn�1 D xfk�1.x/:

And the last term equals kxfk.x/:

X

n>1

k � S.n � 1; k/xn D kx
X

n>1

S.n � 1; k/xn�1 D kxfk.x/:

This shows that equation (4.7) can be rewritten as

fk.x/ D xfk�1.x/C kxfk.x/ for k > 0.

There is a problem here that we haven’t encountered before: two unknown OGFs appear,

namely fk.x/ and fk�1.x/.

One remedy involves solving for fk.x/ and noticing that it provides a recurrence:

fk.x/ D x

1 � kx
fk�1.x/ for k > 0. (4.8)

This tells how to determine, by repeated multiplication, the OGF fk.x/ for any k > 0. We

already know that f0.x/ D 1. Then

f1.x/ D x

1 � x
f0.x/ D x

1 � x

f2.x/ D x

1 � 2x
f1.x/ D x2

.1 � x/.1 � 2x/

f3.x/ D x

1 � 3x
f2.x/ D x3

.1 � x/.1 � 2x/.1 � 3x/

and so forth. We have proved the following theorem.

Theorem 4.3.1 For any k > 0, the OGF of the sequence
˚

S.n; k/
	

n>0
is 1 if k D 0 and

is

xk

.1 � x/.1 � 2x/ � � � .1 � kx/
D

k
Y

j D1

x

1 � jx

if k > 0.

Question 157 Using the generating function, what is a formula for S.n; 2/? That is, what

is the coefficient of xn in x2=.1�x/.1�2x/? Make sure your answer matches the formula

for S.n; 2/ that we found in Section 2.3.
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Bell numbers

The Bell numbers have a well-known and beautiful EGF. To find it in concise form we’ll

end up solving a simple differential equation.

Define

g.x/ WD
X

n>0

B.n/
xn

nŠ

as the EGF for the Bell numbers. As usual start with a recurrence, in this case the one that

appears at the beginning of this section. For reasons that will become clear in a moment,

multiply by xn�1

.n�1/Š
(rather than the usual xn

nŠ
) and then sum over n > 1 to get

X

n>1

B.n/
xn�1

.n � 1/Š
D
X

n>1

0

@

n�1
X

j D0

 

n� 1

j

!

B.j /

1

A
xn�1

.n� 1/Š
: (4.9)

A few alarm bells should go off. First, the left-hand side equals the derivative of g.x/.

Second, the right-hand side looks like a product of EGFs. In fact, by letting m WD n � 1

the right-hand side becomes

X

n>1

0

@

n�1
X

j D0

 

n � 1

j

!

B.j /

1

A
xn�1

.n � 1/Š
D
X

m>0

 
m
X

kD0

 

m

k

!

B.k/

!

xm

mŠ
:

The convolution formula for EGFs then implies it is the product of the EGFs for the se-

quences
˚

B.n/
	

n>0
and f1gn>0:

X

m>0

 
m
X

kD0

 

m

k

!

B.k/

!

xm

mŠ
D
 
X

n>0

B.n/
xn

nŠ

!

„ ƒ‚ …

Bell numbers

 
X

n>0

xn

nŠ

!

„ ƒ‚ …

all-1s

D g.x/ � ex:

In other words, equation (4.9) reduces to g0.x/ D exg.x/. This is a simple differential

equation to solve: what function g has its derivative equal to ex times g itself? The general

solution is g.x/ D eexCC for some constant C . To determine C , notice that g.0/ D
B.0/ D 1. Therefore 1 D ee0CC D e1CC and so C D �1.

Theorem 4.3.2 The exponential generating function for the Bell numbers
˚

B.n/
	

n>0
is

eex�1.

A formula for the Bell numbers

As we recalled at the beginning of this section we do know a formula for the Stirling

numbers of the second kind. It is

S.n; k/ D 1

kŠ

k
X

iD0

 

k

i

!

.�1/i .k � i/n;

which could also be written

S.n; k/ D 1

kŠ

k
X

j D0

 

k

j

!

.�1/k�j j n: (4.10)
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Question 158 Verify this.

It is natural to ask whether a similar formula exists for the Bell numbers. It does.

We know that B.n/ D
P

k>0 S.n; k/. This is OK written as an infinite sum because

S.n; k/ D 0 for k > n. Using the formula shown in equation (4.10) above,

B.n/ D
X

k>0

S.n; k/ D
X

k>0

0

@
1

kŠ

k
X

j D0

 

k

j

!

.�1/k�j j n

1

A :

Writing
�
k
j

�

D kŠ
j Š.k�j /Š

and canceling the kŠ terms shows

X

k>0

0

@
1

kŠ

kX

j D0

 

k

j

!

.�1/k�j j n

1

A D
X

k>0

kX

j D0

.�1/k�j

.k � j /Š

j n

j Š
:

Switching the order of the summation produces

X

k>0

k
X

j D0

.�1/k�j

.k � j /Š

j n

j Š
D
X

j >0

X

k>j

.�1/k�j

.k � j /Š

j n

j Š
D
X

j >0

0

@
j n

j Š

X

k>j

.�1/k�j

.k � j /Š

1

A :

Question 159 Verify that the order of summation was correctly switched.

Now for fixed j > 0, the inner sum is a familiar Maclaurin series:

X

k>j

.�1/k�j

.k � j /Š
D
X

i>0

.�1/i

i Š
D e�1:

So now
X

j >0

j n

j Š

X

k>j

.�1/k�j

.k � j /Š
D
X

j >0

j n

j Š
e�1 D e�1

X

j >0

j n

j Š
:

We have derived a beautiful formula for the n-th Bell number.

Theorem 4.3.3 For any n > 0, B.n/ D 1

e

X

j >0

j n

j Š
.

It is perhaps miraculous that the formula of the theorem always produces an integer. For

example, B.5/ D 52 and so

1

e

X

j >0

j 5

j Š
D 1

e

�
05

0Š
C 15

1Š
C 25

2Š
C 35

3Š
C 45

4Š
C 55

5Š
C � � �

�

D 1

e

�
0

1
C 1

1
C 32

2
C 243

6
C 1024

24
C 3125

120
C � � �

�

equals 52, exactly. The infinite series provides a reasonable method for computing the Bell

numbers because of its rapid convergence. Here are the first 15 Bell numbers:

n 1 2 3 4 5 6 7 8 9 10

B.n/ 1 2 5 15 52 203 877 4140 21,147 115,975

n 11 12 13 14 15

B.n/ 678,570 4,213,597 27,644,437 190,899,322 1,382,958,545

Question 160 Use a computer to calculate some partial sums of 1
e

P

j >0
j 10

j Š
. How many

terms do you need to find the value of B.10/?
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Polynomials and change of basis

Stirling numbers and coefficients of polynomials

To further understand the link between the algebraic and the combinatorial, the rest of

this section offers some insight into how the Stirling numbers relate to the coefficients of

certain polynomials.

Let’s begin by finding a hard answer to an easy question. How many functions Œn� �!
Œk� are there? One answer is kn. To get another answer, condition on the size of the func-

tion’s range. If its range is of size j , where 1 6 j 6 n, then there are
�

k
j

�

ways to select

j elements of Œk� to comprise the range of the function. Once accomplished, there are

S.n; j / � j Š ways to map all of Œn� to these j elements in an onto fashion. This gives a

combinatorial proof of

kn D
n
X

j D1

 

k

j

!

S.n; j / � j Š:

Question 161 In conditioning on the size j of the range, we stated that 1 6 j 6 n. A

more natural choice might be 1 6 j 6 k, but why is the original choice justified?

Now do some adjusting. Since
�
k
j

�

� j Š D .k/j , rewrite the just-derived identity as

kn D
n
X

j D1

S.n; j /.k/j :

This polynomial equation in k is true for infinitely many positive integers k. Uniqueness

of polynomials then allows for replacement of k by an indeterminate x to get the following

theorem.

Theorem 4.3.4 For any n > 0, xn D
nX

j D0

S.n; j /.x/j .

Proof: The proof for n > 0 appears before the theorem. When n D 0, recall that .x/0 WD 1.

In that case, the theorem’s formula is also correct:
P0

j D0 S.0; j /.x/j D S.0; 0/.x/0 D
1 � 1 D x0.

The theorem is interesting because although we derived it in a combinatorial fash-

ion, it is an algebraic fact about the polynomials .x/j . Specifically, it says that the Stir-

ling numbers of the second kind describe how to write the polynomial xn as a linear

combination of the polynomials .x/j for 0 6 j 6 n. For those versed in linear alge-

bra, the numbers S.n; j / are the coordinates of the polynomial xn relative to the basis
˚

.x/0; .x/1; .x/2; : : : ; .x/n

	

for the vector space of polynomials of degree at most n. For

example, the theorem guarantees that

x3 D S.3; 0/.x/0 C S.3; 1/.x/1 C S.3; 2/.x/2 C S.3; 3/.x/3:

Check it:
S.3; 0/.x/0 C S.3; 1/.x/1 C S.3; 2/.x/2 C S.3; 3/.x/3

D 0.1/C 1.x/C 3x.x � 1/C 1.x/.x � 1/.x � 2/

D x C 3x2 � 3xC x3 � 3x2C 2x

D x3:

Question 162 Write x4 as a linear combination of the polynomials .x/0, .x/1, .x/2, .x/3,

and .x/4. Do the same for 5x4 � 10x3.
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Stirling numbers of the first kind

Perhaps it is more interesting to go in the other direction: when you expand, say,

.x/5 D x.x � 1/.x � 2/.x � 3/.x � 4/ D x5 � 10x4C 35x3 � 50x2 C 24x;

where do the coefficients 1;�10; 35;�50; 24 come from? Do they have a combinatorial

meaning?

Since .x/n D x.x � 1/.x � 2/ � � � .x � nC 1/ is a polynomial of degree n, there are

numbers s.n; k/ for 0 6 k 6 n for which

.x/n D
n
X

kD0

s.n; k/xk:

This is the definition of the Stirling numbers of the first kind.

Question 163 Based on the .x/5 example of the previous paragraph, what is s.5; k/ for

0 6 k 6 5?

A recurrence for computing s.n; k/ follows from writing .x/n D .x/n�1.x�nC 1/ or

.x/n D x.x/n�1� .n�1/.x/n�1 . Now use the definition of the numbers s.n; k/ to rewrite

this equation as

n
X

kD0

s.n; k/xk

„ ƒ‚ …

.x/n

D x

n�1
X

kD0

s.n � 1; k/xk

„ ƒ‚ …

.x/n�1

�.n � 1/

n�1
X

kD0

s.n� 1; k/xk

„ ƒ‚ …

.x/n�1

: (4.11)

Finally, just match the coefficients on xk on each side of the equation to derive the follow-

ing recurrence.

Theorem 4.3.5 For n > 0 and k > 0, the Stirling numbers of the first kind satisfy the

identity
s.n; k/ D s.n � 1; k � 1/� .n � 1/ � s.n � 1; k/: (4.12)

Question 164 Why is s.n � 1; k � 1/ the coefficient of xk in the middle term of equation

(4.11)?

Like the Stirling numbers of the second kind, the Stirling numbers of the first kind satisfy

similar boundary conditions: s.0; 0/ D 1, s.n; 0/ D 0 for n > 0, and s.0; k/ D 0 for

k > 0.

Question 165 What is the reason for each of the boundary conditions? Explain in terms

of the definition of the Stirling numbers of the first kind. (Remember .x/0 WD 1.)

The recurrence allows computation of Stirling’s triangle of the first kind:

n# k! 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

2 0 �1 1 0 0 0 0 0

3 0 2 �3 1 0 0 0 0

4 0 �6 11 �6 1 0 0 0

5 0 24 �50 35 �10 1 0 0

6 0 �120 274 �225 85 �15 1 0

7 0 720 �1764 1624 �735 175 �21 1

(4.13)

As usual, the entry in row n and column k is s.n; k/.
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Counting permutations of Œn� with k cycles

The Stirling numbers of the second kind have a combinatorial interpretation. Do the Stir-

ling numbers of the first kind have one as well? Yes, sort of.

Cycle notation

Recall that a permutation of Œn� is a bijection Œn� �! Œn�. Equivalently, it is an n-list

taken from Œn� such that each element appears exactly once. For example, the permutation

.7; 4; 3; 2; 6; 1; 5/ of Œ7� is a convenient notation for the bijection f W Œ7� �! Œ7� that has

f .1/ D 7, f .2/ D 4, f .3/ D 3, and so on.

To write this f as a product of disjoint cycles, do the following. Start with element 1

and then repeatedly apply f to it until you reach 1 again:

1 H) f .1/ D 7 H) f .7/ D 5 H) f .5/ D 6 H) f .6/ D 1:

Record this piece of the permutation as the cycle .1 7 5 6/. In it, the image of any element

appears immediately to the right of that element. At the end it wraps around, so that the

image of 6 is 1.

Next, start with the smallest element not appearing in the above cycle and repeatedly

apply f again:

2 H) f .2/ D 4 H) f .4/ D 2:

Record this as the cycle .2 4/. Now do it again, starting this time with 3. It has f .3/ D 3,

so the corresponding cycle is .3/. This exhausts all the elements of Œ7�, so

f D .1 7 5 6/.2 4/.3/

is now written as a product of disjoint cycles.

The above procedure, when made formal, will always result in a correct representation

of f as a product of disjoint cycles. (See Exercise 3.) Such a representation is not unique,

however, as f D .5 6 1 7/.3/.2 4/ is also a correct representation of f .

To make sure you understand cycle notation, let’s find the “ordinary” (i.e., 7-list) way

to describe the permutation .1 2 4/.3 7/.5/.6/. It has

f .1/ D 2

f .2/ D 4

f .3/ D 7

f .4/ D 1

f .5/ D 5

f .6/ D 6
f .7/ D 3

so as a 7-list, f D .2; 4; 7; 1; 5; 6; 3/.

Question 166 Write the permutation .10; 9; 8; 7; 6; 5; 4; 3; 2; 1/ as a product of disjoint

cycles. Write the permutation .1 9 8 7/.2/.3 6 5 4/ as a 9-list.

Permutations and Stirling numbers of the first kind

Let c.10; 4/ denote the number of permutations of Œ10� that contain exactly four

cycles. Such a permutation either has the element 10 in a cycle by itself, such as in

.1 7 2/.3 9 8 6/.4 5/.10/; or else has the element 10 in a cycle with at least one other

element, such as in .1 9 5 3/.2/.4/.6 10 8 9/.

There are c.9; 3/ permutations of the first type since deleting the cycle containing 10

alone leaves a permutation of Œ9� containing exactly three cycles. There are 9 � c.9; 4/
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permutations of the second type, for we may create such a permutation by first selecting

a permutation of Œ9� into four cycles and then choosing the location of the element 10 in

any of nine ways: before any of the nine elements already appearing. For example, the

second permutation given in the previous paragraph was created by selecting the following

permutation of Œ9� into four blocks:

.1 9 5 3/.2/.4/.6 8 9/

and then choosing to put element 10 before element 8. The requirement of only placing

10 before any of the given nine elements is important. If we also allowed placement after

the last element of a cycle, then we would over-count because, for example, the cycle

.1 9 5 3 10/ is the same as the cycle .10 1 9 5 3/.

Definition 4.3.6 For any n > 0 and k > 0, the expression c.n; k/ equals the number of

permutations of Œn� having exactly k cycles. We define c.0; 0/ WD 1.

Notice that, like the Stirling numbers of the first kind, c.n; 0/ D c.0; k/ D 0 for positive

values of n and k. The discussion prior to the definition provides the idea behind the proof

of the following identity.

Theorem 4.3.7 For n > 0 and k > 0, the numbers c.n; k/ satisfy the identity

c.n; k/ D c.n� 1; k � 1/C .n � 1/ � c.n � 1; k/:

Question 167 Give a combinatorial proof of the theorem.

The triangle of the numbers c.n; k/ should look familiar:

n# k! 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

2 0 1 1 0 0 0 0 0

3 0 2 3 1 0 0 0 0

4 0 6 11 6 1 0 0 0

5 0 24 50 35 10 1 0 0

6 0 120 274 225 85 15 1 0

7 0 720 1764 1624 735 175 21 1

Namely, the numbers c.n; k/ appear to be the absolute values of the numbers s.n; k/. That

c.n; k/ has a combinatorial interpretation while s.n; k/ has an algebraic interpretation adds

to the intrigue.

While a comparison of the two tables of values may convince you that c.n; k/ D
ˇ
ˇs.n; k/

ˇ
ˇ, one way to provide a rigorous proof is to use a double induction on n and k. In

fact we can prove something more specific: s.n; k/ D .�1/nCk c.n; k/.

The base cases occur on the left and top edges of the tables that we constructed for

s.n; k/ and c.n; k/. That is, for values of n and k where at least one is zero. Since s.0; 0/ D
1 D c.0; 0/ and s.n; 0/ D 0 D c.n; 0/ and s.0; k/ D 0 D c.0; k/ for all n > 0 and k > 0,

it follows that s.n; k/ D .�1/nCk c.n; k/ for these values of n and k.

Now let n > 0 and k > 0 be fixed, and assume that the statement is true for all

nonnegative integers m and i for which m 6 n and i 6 k but where equality does not hold
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in both cases. Begin by writing the recursion for s.n; k/, then use the inductive hypothesis

to replace the lesser terms, and then do a little algebra:

s.n; k/ D s.n� 1; k � 1/ � .n � 1/ � s.n� 1; k/

D .�1/n�1Ck�1c.n� 1; k � 1/� .n � 1/ � .�1/n�1Ck c.n � 1; k/

D .�1/nCkc.n � 1; k � 1/C .n � 1/ � .�1/nCk c.n � 1; k/

D .�1/nCk
�

c.n� 1; k � 1/C .n � 1/ � c.n� 1; k/
�

D .�1/nCkc.n; k/:

Question 168 Justify the third equality above. What has happened to the powers of �1

and why?

Therefore the statement is true for all nonnegative integers n and k.

Theorem 4.3.8 For all n > 0 and k > 0, s.n; k/ D .�1/nCkc.n; k/. In particular, the

absolute value of the Stirling number of the first kind s.n; k/ equals the number of permu-

tations of Œn� with exactly k cycles.

The difference operator

Our last adventure in this section reveals another algebraic bridge to the Stirling numbers.

Let f .n/ be a function defined for integers n > 0. Define the difference operator � by

�f .n/ WD f .nC 1/� f .n/:

The difference operator can be iterated as follows: �kf .n/ WD �
�

�k�1f .n/
�

. For exam-

ple,

�2f .n/ D �
�

�f .n/
�

D �
�

f .nC 1/ � f .n/
�

D f .nC 2/ � f .nC 1/�
�

f .nC 1/� f .n/
�

D f .nC 2/ � 2f .nC 1/C f .n/:

Since �3f .n/ D �
�

�2f .n/
�

, it follows that

�3f .n/ D �
�

f .nC 2/� 2f .nC 1/C f .n/
�

D f .nC 3/� 2f .nC 2/C f .nC 1/

�
�

f .nC 2/ � 2f .nC 1/C f .n/
�

D f .nC 3/� 3f .nC 2/C 3f .nC 1/ � f .n/:

Indeed the pattern becomes obvious for �4f .n/:

�4f .n/ D f .nC 4/ � 4f .nC 3/C 6f .nC 2/ � 4f .nC 1/C f .n/:

Question 169 Verify this formula by calculating �
�

�3f .n/
�

.

The following theorem, which Exercise 14 asks you to prove by induction, shows how the

binomial coefficients appear in the computation of �mf .n/.

Theorem 4.3.9 If f .n/ is a function defined for all integers n > 0, then

�mf .n/ D
m
X

kD0

.�1/k

 

m

k

!

f .nCm � k/

for all m > 1.
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In what we are about to derive, our main concern is when n D 0. In that case the

formula of the theorem says

�mf .0/ D
m
X

kD0

.�1/k

 

m

k

!

f .m� k/;

which can be rewritten (let j WD m � k so that k D m � j )

�mf .0/ D
m
X

j D0

.�1/m�j

 

m

j

!

f .j /: (4.14)

This gives a formula for the m-th difference of f at 0 in terms of f .0/; f .1/; : : : ; f .m/.

The question is, can we invert this formula? That is, is it possible to get a formula for

f .n/ in terms of the differences �kf .0/? The answer is yes. Exercise 10 asks for a proof

of the following result.

Theorem 4.3.10 If f .n/ is a function defined for all integers n > 0, then

f .n/ D
n
X

kD0

 

n

k

!

�kf .0/:

The theorem says that if we know the differences of the function at 0, then we can recon-

struct the function itself.

Example: a difference table

Given a function f .n/ defined on nonnegative integers n, the difference table for f at

n D 0 is

f .0/ f .1/ f .2/ f .3/ f .4/ � � �
�f .0/ �f .1/ �f .2/ �f .3/ � � �

�2f .0/ �2f .1/ �2f .2/ �2f .3/ � � �
�3f .0/ �3f .1/ �3f .2/ � � �

�4f .0/ �4f .1/ �4f .2/ � � �
: : :

: : :
: : :

The numbers f .0/; f .1/; f .2/; : : : go in the first row. To get the second row, we know

�f .0/ D f .1/�f .0/ so put that number directly below the space between f .0/ and f .1/.

In this way you can compute the rest of the row by taking the entry to the northeast and

subtracting the entry to the northwest. Because of the definition of the difference operator,

subsequent rows are computed in exactly the same way.

As an example, construct the difference table for f .n/ D n3.

0 1 8 27 64 125 � � �
1 7 19 37 61 � � �

6 12 18 24 � � �
6 6 6 � � �

0 0 � � �

This shows that f .0/ D 0, �f .0/ D 1, �2f .0/ D �3f .0/ D 6, and �mf .0/ D 0 for

m > 3. These entries are printed in boldface in the difference table because they are the
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ones appearing in Theorem 4.3.10. That theorem shows (those same entries are in boldface

below)

n3 D
n
X

kD0

 

n

k

!

�kf .0/

D 0

 

n

0

!

C 1

 

n

1

!

C 6

 

n

2

!

C 6

 

n

3

!

C 0

 

n

4

!

C � � � C 0

 

n

n

!

D
 

n

1

!

C 6

 

n

2

!

C 6

 

n

3

!

:

Since this is true for infinitely many values of the nonnegative integer n, it is true as a

polynomial equation when we replace n by an indeterminate x and use
�

x
k

�

D .x/k

kŠ
. As

such,

x3 D
 

x

1

!

C 6

 

x

2

!

C 6

 

x

3

!

D .x/1 C
6

2Š
.x/2 C

6

3Š
.x/3:

In general, with f .x/ D xn,

xn D
n
X

kD0

 

x

k

!

�kf .0/ D
n
X

kD0

�kf .0/

kŠ
.x/k :

But we also know that xn D
n
X

kD0

S.n; k/.x/k and so S.n; k/ D �kf .0/

kŠ
or �kf .0/ D

S.n; k/ � kŠ.

All of this shows that if f .x/ D xn, then �kf .0/ has a combinatorial interpretation:

it equals the number of onto functions Œn� �! Œk�.

Summary

For fixed k > 0, the OGF of the numbers S.n; k/ is xk=.1 � x/.1 � 2x/ � � � .1 � kx/. The

EGF of the numbers B.n/ is eex�1 and a beautiful formula for the n-th Bell number is

B.n/ D 1

e

X

j >0

j n

j Š
:

Algebraically, the Stirling numbers of the first and second kinds are the coefficients in

certain polynomial expansions:

.x/n D
n
X

kD0

s.n; k/xk and xn D
n
X

kD0

S.n; k/.x/k :

Although the Stirling numbers of the first kind alternate in sign, their absolute values have

a combinatorial interpretation:
ˇ
ˇs.n; k/

ˇ
ˇ equals the number of permutations of Œn� with

exactly k cycles. The difference operator provides another link between polynomials and

Stirling numbers of the second kind.
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Exercises

1. Write the polynomial 3x4� x3C 4xC 10 as a linear combination of the polynomials

.x/0; .x/1; .x/2; .x/3; .x/4.

2. Write 3.x/4 � 12.x/3 C 4.x/1 � 17 as a linear combination of the polynomials

1; x; x2; x3; x4.

3. Describe an algorithm that takes as its input a permutation of Œn�, written as an n-

list, and outputs the permutation written in cycle notation. The cycle notation should

have the following properties: (1) the first cycle should begin with element 1; (2) each

successive cycle should begin with the smallest element not belonging to any of the

previous cycles.

4. (a) Give a combinatorial proof: for n > 1, c.n; n� 1/ D
�
n
2

�

.

(b) Give a combinatorial proof: for n > 1, c.n; 1/ D .n � 1/Š.

(c) Give an algebraic proof: for n > 1, s.n; n� 1/ D �
�
n
2

�

.

(d) Give an algebraic proof: for n > 1, s.n; 1/ D .�1/n�1.n � 1/Š.

5. Let f be a continuous function. Prove that the general solution to the differential

equation y0 D f .x/y is y D eF .x/CC where F is an antiderivative of f and C is a

constant.

6. Prove: for any n > 0, .�x/n D .�1/n.x/.n/. (The notation .x/.n/ is “rising factorial”

notation. See Exercise 16 of Section 2.1.)

7. Prove: for any n > 0, .x/.n/ D
P

k>0 c.n; k/xk . (See previous exercise.)

8. Write the expansion of .1Cx/n as a linear combination of the polynomials .x/k . That

is, determine the coefficients ak so that .1C x/n D
Pn

kD0 ak.x/k .

9. Let k > 0. In this section we derived the OGF of the sequence
˚

S.n; k/
	

n>0
. Show

that the EGF of the same sequence is 1
kŠ

.ex � 1/k .

10. Prove Theorem 4.3.10.

11. Find and prove a formula for the number of partitions of Œn� in which consecutive

integers never appear in the same block.

12. Following the example for x3 in this section, construct the difference table for f .n/ D
n4 and then write x4 as a linear combination of the polynomials

�
x
j

�

for 0 6 j 6 4.

13. Prove that, like the derivative, the difference operator � satisfies �
�

f .n/ C g.n/
�

D
�f .n/C�g.n/ and for any number c, �

�

cf .n/
�

D c�f .n/.

14. Prove Theorem 4.3.9 by induction on m.

Travel Notes

When f .x/ D xn the appearance of the equation

f .x/ D
n
X

kD0

�kf .0/

kŠ
.x/k
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may remind you of the Maclaurin series of an infinitely differentiable function, namely

g.x/ D
X

k>0

g.k/.0/

kŠ
xk:

Both equations describe how to express a function (f .x/ or g.x/, respectively) as a linear

combination of other functions (falling factorials .x/k or power functions xk) where the

coefficients of that linear combination involve measurements of change at x D 0 (the

k-th difference or the k-th derivative, respectively). Indeed there is a calculus of finite

differences that is the discrete version of ordinary, continuous calculus.

4.4 Integer partition numbers

In Sections 2.4 and 3.4, we learned some facts about partitions of integers. Recall that

P.n; k/ equals the number of partitions of the integer n into k parts, and P.n/ equals

the total number of partitions of the integer n. Among other things, the partition numbers

satisfy the identity

P.n; k/ D
k
X

j D1

P.n � k; j /:

(This is Theorem 2.4.2 on page 79.) Simply put, this says that the number of partitions of

n into k parts equals the number of partitions of n � k into at most k parts. It is perhaps

less cumbersome to write it like

P.n; k/ D P.n � k; at most k parts/: (4.15)

We also learned that the OGF of
˚

P.n/
	

n>0
is

1

.1 � x/.1 � x2/.1 � x3/ � � � D
Y

j >1

1

1 � xj
:

(This is Theorem 3.4.3 on page 120.) In this section we will prove two more combinatorial

theorems about partition numbers, find the OGF of P.n; k/ for fixed k, and investigate the

prospect of formulas for partition numbers.

Ferrers diagrams

A Ferrers diagram is a useful tool not only for visualizing a partition but also for proving

theorems about partitions. The Ferrers diagram for the partition 7C 5C 5C 2C 1 of 20 is

� � � � � � �
� � � � �
� � � � �
� �
�

There is one row for each part of the partition and as many dots in each row as the size of

its corresponding part. A Ferrers diagram also lists the parts in non-increasing order, from

top to bottom.
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Operations on Ferrers diagrams

One operation that we can perform on a Ferrers diagram is to delete its first column. This

corresponds to subtracting 1 from each part. In fact, this is exactly what we did when we

gave the bijective proof that P.n; k/ D P.n � k; at most k parts/ in Theorem 2.4.2 on

page 79.

Question 170 What operation on Ferrers diagrams leads to an immediate bijective proof

of the identity P.n; largest part k/ D P.n � k; largest part at most k/?

Another and perhaps more subtle operation is to take the conjugate. To obtain the con-

jugate of a Ferrers diagram, simply swap the role of rows and columns.4 For example, the

conjugate of the Ferrers diagram of the partition shown earlier is

� � � � �
� � � �
� � �
� � �
� � �
�
�

This Ferrers diagram corresponds to the partition 5C4C3C3C3C1C1 of 20. We can in

this way speak of the conjugate of a partition without referring to Ferrers diagrams. Ferrers

diagrams offer a convenient way to carry out the conjugation. See, though, Exercise 2.

Question 171 What is the conjugate of the partition 19C 1?

Here are some basic facts about conjugation.

� Fact 1: The conjugate of a partition of n is also a partition of n.

� Fact 2: The conjugate operation, applied twice, returns the original partition.

� Fact 3: If a partition has largest part k, then its conjugate has k parts. Likewise, if a

partition has k parts, then its conjugate has largest part k.

� Fact 4: If a partition has at most k parts, then its conjugate has largest part at most

k. Likewise, if a partition has largest part at most k, then its conjugate has at most k

parts.

� Fact 5: Conjugation is always a one-to-one operation.

Question 172 Why is Fact 5 true? Give a quick proof.

Proofs using Ferrers diagrams

Identities based on Facts 3 and 4

Consider the partitions of n into k parts (call this set A) and the partitions of n with largest

part k (call it B). The conjugate operation is a function from A to B by Fact 3. It is a

one-to-one function by Fact 5. It is onto by Facts 2 and 3: given a partition in B , take its

conjugate to get a partition in A; then the conjugate of this partition is the original partition

from B . We have just given a bijective proof of the following theorem.

Theorem 4.4.1 For any positive integers n and k, P.n; k/ D P.n; largest part k/.

4Perhaps “transpose” is a better term (like the transpose of a matrix), but the term “conjugate” has stuck.
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Fact 4 above also leads to a similar combinatorial theorem of which we will make good

use when we derive some algebraic results.

Theorem 4.4.2 For any n; k > 1,

P.n; at most k parts/ D P.n; largest part at most k/:

Question 173 Provide a proof of this theorem using conjugation.

Self-conjugate partitions
A partition is self-conjugate provided that its conjugate equals itself. Examples of self-

conjugate partitions are 3C3C3 and 7C4C2C2C1C1C1 and 1. Our next result says

that the self-conjugate partitions of n are in one-to-one correspondence with the partitions

of n into distinct odd parts.

Ferrers diagrams help us understand why. Take the partition 3C 3C 3 of 9:

� � �
� � �
� � �

Now “unpeel” one layer of this Ferrers diagram by removing the dots in its first row and

column, of which there are five. What is left is the self-conjugate partition 2 C 2, from

which we can similarly unpeel the dots (three of them) in its first row and column. Then

only the self-conjugate partition 1 is left, and that is easy to unpeel. In this way we create

the partition 5C 3C 1 which has distinct odd parts. The following diagram, using different

symbols for each unpeeled layer, shows the correspondence:

� � �
� � �
� � ?

�!
� � � � �
� � �
?

Question 174 Via the unpeeling operation, to what partition does the self-conjugate par-

tition 7C 4C 2C 2C 1C 1C 1 correspond? Does it have distinct odd parts?

This operation always transforms a self-conjugate partition into one with distinct odd parts.

Question 175 Explain why this happens in general.

The reverse operation does indeed transform a partition into distinct odd parts into a

self-conjugate partition. To illustrate the reverse operation, begin with the Ferrers diagram

of a partition into distinct odd parts and locate the center dot in each row. For example, the

centers of the partition 9C 7C 3C 1 are marked with ı in the following:

� � � � ı � � � �
� � � ı � � �
� ı �
ı

Now, bend each row around its center and nest each resulting L-shape so that a self-

conjugate partition results:

� � � � ı � � � �
� � � ı � � �
? ı ?

ı

�!

ı � � � �
� ı � � �
� � ı ?

� � ? ı
� �
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178 4. Famous Number Families

Question 176 In general, why must there always be a center dot in each row of such a

partition? Why is the resulting partition always self-conjugate?

These ideas prove the theorem.

Theorem 4.4.3 For n > 1, P.n; self-conjugate/ D P.n; distinct odd parts/.

Generating functions

The OGF for the partition numbers P.n/ is given at the beginning of this section. By

stopping its infinite product at a fixed positive integer k, we get the OGF for the number of

partitions of n with largest part at most k. But, by Theorem 4.4.2, this means we have also

found the OGF for the number of partitions of n with at most k parts. In other words,

X

n>0

P.n; at most k parts/xn D
k
Y

j D1

1

1 � xj
:

Now, to get the OGF for P.n; k/, we can just use the self-evident identity

P.n; k/ D P.n; at most k parts/ � P.n; at most k � 1 parts/

and subtract the corresponding OGFs. We have

1

.1 � x/ � � � .1 � xk�1/.1 � xk/
� 1

.1 � x/ � � � .1 � xk�1/

D 1

.1 � x/ � � � .1 � xk�1/.1 � xk/
� 1 � xk

.1 � x/ � � � .1 � xk�1/.1 � xk/

D 1 � .1 � xk/

.1 � x/ � � � .1 � xk�1/.1 � xk/

D xk

.1 � x/ � � � .1 � xk�1/.1 � xk/
:

Theorem 4.4.4 For any k > 1, the OGF of the sequence
˚

P.n; k/
	

n>0
equals

xk

.1 � x/.1 � x2/ � � � .1 � xk/
D

k
Y

j D1

x

1 � xj
:

Compare this with Theorem 4.3.1 on page 164. The similarity is striking!

Formulas for partition numbers

We have reasonable, closed-form formulas for all of the counting functions that we intro-

duced in Chapter 2 except for the integer partition numbers. Are formulas for P.n/ and

P.n; k/ possible? Yes and no.

A formula for P.n/ is possible but completely beyond the scope of this text. Formulas

for P.n; 1/, P.n; 2/, P.n; 3/, and so forth are possible but the difficulty appears to increase

as the number of parts increases.

We already know that P.n; 1/ D 1 and that P.n; 2/ D
�

n
2

˘

.

Question 177 Justify the formula for P.n; 2/.
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The following theorem, which we devote the rest of this subsection to proving, provides a

formula for P.n; 3/. The notation fxg denotes the closest integer to x.

Theorem 4.4.5 For any n > 0, P.n; 3/ equals the closest integer to n2

12
. That is, P.n; 3/ D

n
n2

12

o

.

Our proof strategy is first to obtain a formula for P.n; at most 3 parts/ and then apply

equation (4.15), namely

P.n; 3/ D P.n � 3; at most 3 parts/:

It is an interesting journey.

We begin by using Theorem 4.4.2 to write

P.m; at most 3 parts/ D P.m; largest part at most 3/:

Therefore the OGF for the partitions of m with at most 3 parts is

X

m>0

P.m; at most 3 parts/xm D 1

.1 � x/.1 � x2/.1 � x3/
: (4.16)

To find the coefficient of xm in the expression on the right-hand side, we factor the denom-

inator in preparation for finding its partial fraction decomposition (PFD):

1 � x2 D .1 � x/.1C x/

1 � x3 D .1 � x/.1C x C x2/:

The quadratic 1CxCx2 is irreducible over the real numbers—it cannot be factored further.

There are at least two options.

Option one is to go full steam ahead with the normal PFD; Exercise 5 asks you to take

this route. Option two comes out cleaner but at first glance appears to require some luck.

Change the PFD’s form a bit and instead use

1

.1 � x/.1 � x2/.1 � x3/
D A

.1 � x/3
C B

.1 � x/2
C C

1 � x3
C D

1 � x2
: (4.17)

Since the decomposition on the right doesn’t include all terms required of a PFD, we should

expect no guarantee that values A, B , C , D exist that make the equation true. But if they do

then it will be very easy to extract the coefficient of xm, and herein would lie the advantage.

The usual clearing-of-denominators procedure in equation (4.17) produces

1 D A.1C x/.1C x C x2/C B.1C x/.1 � x3/

C C.1 � x/.1 � x2/CD.1 � x/.1 � x3/;

and the solution is A D 1=6, B D D D 1=4, and C D 1=3.

Question 178 Carry out the algebra that shows that this is the solution.

We have found the decomposition

1

.1 � x/.1 � x2/.1 � x3/
D 1=6

.1 � x/3
C 1=4

.1 � x/2
C 1=3

1 � x3
C 1=4

1 � x2
:
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Replacing each term on the right-hand side with its infinite series representation shows that

we seek the coefficient of xm in

1

6

X

m>0

  

3

m

!!

xm C 1

4

X

m>0

  

2

m

!!

xm C 1

3

X

m>0

x3m C 1

4

X

m>0

x2m:

That coefficient, and therefore a formula for P.m; at most 3 parts/, is

1

6

  

3

m

!!

C 1

4

  

2

m

!!

C
�

either 1=3 or 0
�

C
�

either 1=4 or 0
�

:

This is only marginally acceptable as a formula because of the sloppiness of the last two

terms. But it turns out that a bit more algebra justifies it. Begin by simplifying the first two

terms:
1

6

  

3

m

!!

C 1

4

  

2

m

!!

D � � � D .mC 3/2

12
� 1

3
:

Question 179 Verify this.

So now the coefficient of xm in the OGF is

.mC 3/2

12
� 1

3
C
�

either 1=3 or 0
�

C
�

either 1=4 or 0
�

:

By enumerating the four possibilites, we learn that the sum of the terms other than the first

one only takes on one of four possible values:

�1
3
C 0 C 0 D �1

3

�1
3
C 0 C 1

4
D � 1

12

�1
3
C 1

3
C 0 D 0

�1
3
C 1

3
C 1

4
D 1

4

But each of these numbers is, in absolute value, less than 1
2

. Therefore, we can conclude

that P.m; at most 3 parts/ equals the closest integer to .mC3/2

12
. That is,

P.m; at most 3 parts/ D
�

.mC 3/2

12

�

:

To get our result, apply this formula with m D n� 3:

P.n; 3/ D P.n � 3; at most 3 parts/ D
( �

.n � 3/C 3
�2

12

)

D
�

n2

12

�

:

This completes the proof of Theorem 4.4.5.

An asymptotic approximation for P.n; k/

Essentially the same approach works to discover formulas for P.n; 4/ and higher, but

the contortions involved grow more complicated at each step. This suggests that an all-

encompassing exact formula for P.n; k/ will not be, well, simple.



“master” — 2010/9/20 — 12:30 — page 181 — #199
i

i

i

i

i

i

i

i

4.4. Integer partition numbers 181

Let’s lower our standards a bit and instead search for an approximation to P.n; k/ for

fixed k. The type of approximation that we will seek is an important one in mathematics:

an asymptotic approximation. Asymptotic approximations are often just as useful, and in

some instances more useful, than exact formulas.

Given two functions f .n/ and g.n/, we say that f is asymptotically equivalent to g

provided that

lim
n�!1

f .n/

g.n/
D 1:

The notation f .n/ � g.n/ indicates asymptotic equivalence. This is an equivalence rela-

tion; see Exercise 7(a).

Question 180 Show that f .n/ D 4n3 � 100nC 12 and g.n/ D 19C 20n� 21n2 C 4n3

are asymptotically equivalent.

So, we seek a familiar function (e.g., a polynomial or exponential function) that is

asymptotically equivalent to P.n; k/. Our strategy for obtaining this involves first squeez-

ing P.n; k/ between the following lower and upper bounds.

��
k

n�k

��

kŠ
6 P.n; k/ 6

�� k

nC.k
2/�k

��

kŠ
:

We can prove these bounds combinatorially. Then, we will show that the lower and up-

per bound are each asymptotically equivalent to nk

kŠ.k�1/Š
. This then forces P.n; k/ to be

asymptotically equivalent to this function as well.

The combinatorial proofs of the upper and lower bounds rely on thinking of a partition

as a solution to a certain system. Another way to think of a partition of n into k parts is as

a k-list .z1; z2; : : : ; zk/ that satisfies

z1 C z2 C � � � C zk D n

z1 > z2 > � � � > zk > 1:
(4.18)

The second condition forces the parts into non-increasing order. This makes sure that we

don’t consider, say, 4C 2C 1 and 2C 4C 1, or rather .4; 2; 1/ and .2; 4; 1/, to be different

partitions.

But if we drop that second condition and instead consider the k-lists .z1; z2; : : : ; zk/

that satisfy

z1 C z2 C � � � C zk D n

all zi > 1;
(4.19)

then there are
��

k
n�k

��

lists. We discussed this in Section 2.2.

Question 181 How many solutions do equations (4.18) and (4.19) have when n D 8 and

k D 4?

A lower bound for P.n; k/

Let’s attempt a count of the solutions to the “bigger” system (4.19) by first starting with

the solutions to the “smaller” system (4.18). Bigger and smaller refer to the fact that every

solution to (4.18) is a solution to (4.19), but not the other way around.

Consider the n D 7 and k D 3 case for a moment. There are
��

3
7�3

��

solutions to

the bigger system and P.7; 3/ to the smaller. Take any partition of 7 into three parts, say
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4C 2C 1 or .4; 2; 1/. We may permute this 3-list in 3Š ways to create different solutions

to the bigger system (4.19), namely

.4; 2; 1/ .4; 1; 2/ .2; 4; 1/ .2; 1; 4/ .1; 4; 2/ .1; 2; 4/:

But if we started with a partition that did not have distinct parts then we would create fewer

than 3Š solutions. If we chose .3; 2; 2/ then it would lead to only three different solutions:

.3; 3; 2/ .3; 2; 3/ .2; 3; 3/:

But no matter: 3Š � P.7; 3/ is then an over-estimate of the
��

3
7�3

��

solutions to the bigger

system. This shows that 3Š � P.7; 3/ >
��

3
7�3

��

or

P.7; 3/ >

��
3

7�3

��

3Š
:

Once generalized, this proves our lower bound on P.n; k/.

Theorem 4.4.6 For any n; k > 1, P.n; k/ >

��
k

n�k

��

kŠ
.

Question 182 Use the theorem to find lower bounds on P.n; 2/ and P.n; 3/ as a function

of n.

An upper bound for P.n; k/

Now let’s attempt to use the solutions to the smaller system (4.18) in a different way. Again

consider the n D 7 and k D 3 case. Here are the P.7; 3/ D 4 partitions of 7 into three

parts, written as solutions to the smaller system:

.5; 1; 1/ .4; 2; 1/ .3; 3; 1/ .3; 2; 2/:

Our strategy in getting the lower bound worked because we over-counted the solutions to

the bigger system (4.19). An under-count should lead to an upper bound.

Transform the four solutions above so that they all have distinct parts by adding 2 to

the first part, 1 to the second part, and 0 to the third:

.7; 2; 1/ .6; 3; 1/ .5; 4; 1/ .5; 3; 1/:

Now each is a partition of 7C.2C1C0/ D 10 into three distinct parts. Then permute each

in one of 3Š ways as before. This time, we do create P.7; 3/ � 3Š D 24 distinct solutions to

z1 C z2 C z3 D 10

all zi > 1:

But there are more solutions than just the 24 that we constructed, namely those like .4; 4; 2/

which have at least one repeated element. So we have under-estimated the solutions to this

system and found that P.7; 3/ � 3Š 6
��

3
10�3

��

or

P.7; 3/ 6

��
3

10�3

��

3Š
:

In general, take a partition of n into k parts, say .z1; z2; : : : ; zk/ and transform it into

the partition
�

z1 C .k � 1/; z2 C .k � 2/; : : : ; zk�1 C 1; zk C 0
�

(4.20)

that has distinct parts.
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Question 183 Explain why this partition must have distinct parts, even though the original

one .z1; z2; : : : ; zk/ may not have.

By doing the transformation shown in (4.20) just above, we have added a total of

1C 2C � � � C .k � 2/C .k � 1/ D k.k � 1/

2
D
 

k

2

!

to the original partition of n, so this is now a partition of nC
�

k
2

�

into k distinct parts. If we

now permute the elements of this partition in one of kŠ ways, we have created P.n; k/ � kŠ

distinct solutions to

z1 C z2 C � � � C zk D nC
 

k

2

!

all zi > 1:

But there are potentially more solutions since the ones we created do not include those

with repeated elements. Therefore P.n; k/ � kŠ is a lower bound on the total number of

solutions:

P.n; k/ � kŠ 6

  

k

nC
�

k
2

�

� k

!!

:

We now have our upper bound on P.n; k/.

Theorem 4.4.7 For any n; k > 1, P.n; k/ 6

�� k

nC.k
2/�k

��

kŠ
.

Question 184 Use the theorem to find upper bounds on P.n; 2/ and P.n; 3/ as a function

of n.

The squeeze

We know that
��

k
n�k

��

D
�

n�1
k�1

�

and
�� k

nC.k
2/�k

��

D
�nC.k

2/�1

k�1

�

.

Question 185 Verify these.

Our bound now looks like

�
n�1
k�1

�

kŠ
6 P.n; k/ 6

�nC.k
2/�1

k�1

�

kŠ
:

Let’s first show that the lower and upper bounds are asymptotically equivalent. It can be

seen more easily in the context of an example. Since we are holding k fixed, let’s pick a

particular value of k, say k D 4. Now the lower bound as a function of n is
�

n�1
4�1

�

4Š
D
�

n�1
3

�

4Š
D .n � 1/3

4Š3Š

and the upper bound is
�nC.4

2/�1

4�1

�

4Š
D
�
nC5

3

�

4Š
D .nC 5/3

4Š3Š
:

Now take their ratio:

.n � 1/3

4Š3Š

,

.nC 5/3

4Š3Š
D .n � 1/3

.nC 5/3

D .n � 1/.n � 2/.n � 3/

.nC 5/.nC 4/.n C 3/
:
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As n �! 1 this approaches 1 because of a favorite calculus trick: both numerator and

denominator are cubic polynomials of the form n3 C [lower order terms] and so the limit

as n �!1 equals the ratio of their leading coefficients, which is 1.

So in this case (k D 4) the upper and lower bounds are asymptotically equivalent,

but to what function? We claim that they are asymptotically equivalent to n3=4Š3Š. This is

because
�
n�1
4�1

�

4Š

,

n3

4Š3Š
D .n � 1/3

4Š3Š

,

n3

4Š3Š
D .n � 1/3

n3
D .n � 1/.n � 2/.n � 3/

n3

which again goes to 1 as n �!1. Now, since both the upper and lower bound are asymp-

totically equivalent to n3

4Š3Š
D n3

144
, and since P.n; 4/ is squeezed between them for all n, it

follows that

P.n; 4/ � n3

144
:

That last step requires proof even though it sounds intuitive. See Exercise 7(b).

The computations for general k are much the same. The goal is to show that both the

lower and upper bound are asymptotically equivalent to nk�1

kŠ.k�1/Š
. The exercises ask you to

fill in the details.

Theorem 4.4.8 If k > 0 is fixed, then P.n; k/ is asymptotically equivalent to

nk�1

kŠ.k � 1/Š

as a function of n.

It is worth remarking that for fixed k, P.n; k/ grows as a polynomial function of n.

Question 186 How close is the asymptotic approximation to the exact formulas for P.n; 1/,

P.n; 2/, and P.n; 3/?

Summary

Ferrers diagrams provide an inspiration for bijective proofs of partition identities. In terms

of formulas for P.n; k/, we know that

P.n; 1/ D 1 P.n; 2/ D
jn

2

k

P.n; 3/ D
�

n2

12

�

where f�g denotes the closest-integer-to operator. Other formulas for P.n; k/ and for P.n/

are possible but require advanced methods. For fixed k, an asymptotic approximation for

P.n; k/ is

P.n; k/ � nk�1

kŠ.k � 1/Š
:

Exercises

1. What is the conjugate of the partition .n � k/ C k of n, where n > 2 and 1 6 k 6

bn=2c?
2. Let z1C z2C� � �C zk be a partition of n into k parts, where as usual z1 > z2 > � � � >

zk > 1. Show how to compute the conjugate of this partition using only the zi ’s and

without referring to Ferrers diagrams.



“master” — 2010/9/20 — 12:30 — page 185 — #203
i

i

i

i

i

i

i

i
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3. Suppose that P.n/, the total number of partitions of the given integer n, is odd. Prove

or disprove: at least one of those partitions is self-conjugate.

4. Find a formula for P.n; 2/ using the technique we used for P.n; 3/. Start by finding

the partial fraction decomposition of the OGF for P.n; at most 2 parts/:

1

.1 � x/.1 � x2/
D A

1 � x
C B

.1 � x/2
C C

1C x
:

Your final answer will look different than the formula P.n; 2/ D
�

n
2

˘

that we already

know.

5. This outlines an alternate way to obtain the formula for P.n; 3/.

(a) Find r1 and r2 so that 1C x C x2 D .1 � r1x/.1 � r2x/.

(b) Find A through F that determines the partial fraction decomposition of the OGF

for P.m; at most 3 parts/:

1

.1 � x/.1 � x2/.1 � x3/
D A

1 � x
C B

.1 � x/2
C C

.1 � x/3

C D

1C x
C E

1 � r1x
C F

1 � r2x
:

(c) Find the coefficient of xm and prove P.m; at most 3 parts/ D
n

.mC3/2

12

o

.

6. Fix an integer t > 0. Prove: as n �!1, the value of P.n; n � t/ becomes constant.

What is the value of that constant, and at what value of n does this occur?

7. We used the following properties of asymptotic equivalence in this section. Assume

for convenience that all functions are positive-valued.

(a) Prove that the “is asymptotically equivalent to” relation is an equivalence relation.

(This is a nice review of the properties of limits.)

(b) Prove: if f .n/ 6 g.n/ 6 h.n/ for all n and if f � h, then f � g.

8. Give a combinatorial proof: for any n > 0, nP.n/ D
Pn

j D1 P.n�j /�.j /. Here �.j /

is defined to be the sum of the divisors of j .

9. This exercise concerns an upper bound on P.n/. Recall we define P.0/ WD 1.

(a) Prove that P.n/ 6 P.n � 1/C P.n � 2/ for n > 2.

(b) Use part (a) to prove that P.n/ 6 Fn for n > 0, where Fn is the n-th Fibonacci

number.

Travel Notes

The book by Andrews & Eriksson (2004) is an excellent introduction to the current state-

of-the art regarding integer partitions. Among other things it discusses formulas for P.n; 4/

and P.n; 5/. It also gives many examples of proofs of partition identities using bijections

and Ferrer’s diagrams.

The study of integer partitions is one of the areas where combinatorics intersects most

significantly with number theory. The formula for P.n/ that started with the 1918 work

of Hardy & Ramanujan and culminated with the 1937 work of Rademacher is a result in

analytic number theory and complex analysis.
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C H A P T E R 5

Counting Under Equivalence

You have probably seen ball-and-stick models of the molecular structure of chemical com-

pounds. Each ball represents a different atom and each stick represents a chemical bond.

In the 1930s, the Hungarian mathematician George Pólya considered the problem of enu-

merating the isomers of a chemical compound. He solved it, and the main result of his

efforts was a powerful, all-purpose tool that has since been applied to solve numerous

other counting problems: Pólya’s enumeration theorem.

Pólya’s problem involved counting under equivalence. In such a problem, the goal is

to count the equivalence classes of an equivalence relation. The equivalence principle of

Section 1.4 applies when all equivalence classes have the same size. Creating a more gen-

eral principle to handle situations in which not all equivalence classes have the same size

requires some abstract algebra (specifically, group theory) to make the necessary modi-

fications. This results in a formula, known as the Cauchy-Frobenius-Burnside theorem,

which looks a bit like the formula of the equivalence principle. To that result Pólya added

generating functions to arrive at his theorem.

The reader familiar with basic group theory, orbits, and the symmetric, dihedral, and

cyclic groups can skim Sections 5.2 and 5.3 until the statement of the Cauchy-Frobenius-

Burnside theorem in Section 5.3. Section 5.1 is essential, however, as it contains two ex-

amples to which we refer throughout this chapter.

5.1 Two examples

In this short section we present two examples that we use to illustrate most of the concepts

in this chapter. The first example is used by many authors and the reason is a good one: it

exposes enough depth of the more general problems we wish to study while remaining of

manageable size.

Square-coloring

In how many different ways can we construct a square using four indistinguishable sticks

and four styrofoam balls, where each ball is either black or white?

These constructions are known as colorings of the corners of the square. If we regard

the square as a fixed object (suppose it’s mounted on a wall) then any coloring is a function

f W Œ4� �! fblack; whiteg from the set of corners (which we can number 1–4) to the

187
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1 2

34

f1

1 2

34

f2

1 2

34

f3

1 2

34

f4

1 2

34

f5

1 2

34

f6

1 2

34

f7

1 2

34

f8

1 2

34

f9

1 2

34

f10

1 2

34

f11

1 2

34

f12

1 2

34

f13

1 2

34

f14

1 2

34

f15

1 2

34

f16

Figure 5.1. The 16 black-white colorings of the labeled corners of a square.

set of possible colors. There are 24 D 16 possible colorings. Figure 5.1 displays these 16

functions as colorings, labeled f1; f2; : : : ; f16.

But if we regard the square as freely movable in space (suppose it’s a toy you can toss

around), then many of those 16 colorings are equivalent. Under this notion of equivalence

there are only six different colorings:

Notice that the labels no longer appear on the corners. The underlying equivalence relation

must account for the fact that rotating or flipping a square does not change its coloring.

Such operations rely on the square itself, not the colorings, and are known as the symme-

tries of the square.

Each of the six colorings listed above is a representative from a different equivalence

class. It is important to notice that not all equivalence classes have the same size. For

example, ff2; f3; f4; f5g is the equivalence class containing f2, while ff10; f11g is the

equivalence class containing f10.

Question 187 What are the sizes of the other four equivalence classes?

This problem opens the door to many natural generalizations. Instead of a square, we

might ask the same question of a regular pentagon, hexagon, or n-gon. We might also ask

how many colorings use a specified number of colors of each type. For example, there is

one 2-coloring of the square that uses one white and three black. The theory will allow us

to answer all of these questions.
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This problem also offers a glimpse of Pólya’s original motivation for developing his

theory. When the colors are really molecules and the sticks are really chemical bonds, then

the answer gives the number of chemical compounds of a certain type. Counting chemical

compounds requires significant knowledge of chemistry, so we do not treat this application

in this book.

Grid-coloring

In how many ways can we color the squares of a 3 � 3 grid such that each square is either

black or white?

If the squares of the grid are numbered or otherwise distinguished, then there are 29

colorings, corresponding to the possible functions f W Œ9� �! fblack; whiteg. But if the

grid is allowed to rotate in the plane (suppose it’s drawn on a piece of paper, like a tic-

tac-toe board) then there are fewer colorings. For example, the following colorings are all

equivalent:

Like the problem of coloring the square, each equivalence class does not have the same

size. The above grids form an equivalence class of size four, while the grids

form an equivalence class of size two.

Again, we might also be interested in colorings with certain properties. The question,

“How many different grids have five squares black and four squares white?” is the same

question as, “How many different tic-tac-toe boards have five Xs and four Os?”

5.2 Permutation groups

Our first task is to introduce those parts of group theory that are applicable to the counting

methods we wish to develop. We begin with permutations for we use them to describe how

an object like the square can move in space or how the 3 � 3 grid can move in the plane.

In this chapter we typically write permutations in one of two ways. The first

way, known as two-line form, is self explanatory. For example, the permutation f D
.7; 4; 3; 2; 6; 1; 5/ of Œ7� is written in two-line form as

f D
�

1 2 3 4 5 6 7

7 4 3 2 6 1 5

�

:

To find f .i/, simply look directly below element i .

The other way is to write f as a product of disjoint cycles, and we explained how to do

this in Section 4.3. (See the subsection entitled “Cycle notation” for the idea.) In this case,

f can be written as a product of disjoint cycles as f D .1 7 5 6/.2 4/.3/.

Question 188 Write the permutation .1 7 3/.2/.4 9 5 6 8/ in two-line form.
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Groups

The set of all permutations of Œn�, together with the operation ı of function composition,

forms what is known as the symmetric group on n elements and is denoted .Sn; ı/ or

just Sn. For our purposes in this chapter, it is the most important example of a group.

Other common examples of groups include the sets Z or R or C each with the operation

of addition, or the set of nonzero real numbers with the operation of multiplication. From

linear algebra, the set of invertible n � n matrices forms a group under the operation of

matrix multiplication. We discuss some of these after giving the definition of group.

Definition 5.2.1 (group) A group is a pair .G; �/ where G is a set and � is a binary

operation1 on G that satisfies the following four properties.

� Closure: For each a; b 2 G, we have a � b 2 G.

� Associativity: For each a; b; c 2 G, we have a � .b � c/ D .a � b/ � c.

� Existence of an identity: There is an element e 2 G such that for each a 2 G, we

have a � e D a and e � a D a.

� Existence of inverses: For each a 2 G, there exists x 2 G such that a � x D e and

x � a D e.

For example, the set of integers with the operation of addition, namely .Z;C/, is a group

for the following reasons. It satisfies the closure property because a C b is an integer

whenever a and b are integers. We know addition to be an associative operation: aC .b C
c/ D .a C b/ C c holds for all integers a, b, and c. The integer 0 serves as an identity

because aC 0 D 0C a D a for any integer a. Finally, for any integer a, the integer �a is

its inverse because a C .�a/ D 0 and .�a/C a D 0.

The group .Z;C/ satisfies an additional property—the commutative property—not

mentioned in the definition of group. That is, a C b D b C a for all integers a and b.

A group needn’t satisfy commutativity, and indeed some of the groups we use in this text

(most notably the symmetric group) are not commutative. A group whose binary operation

is commutative is a commutative group or an Abelian group.

Question 189 (linear algebra) For the group of invertible 2 � 2 matrices, what is the

identity element? What is the inverse of

�
4 1

�2 2

�

? Is this a commutative group?

The following list contains some facts about groups. The cancellation laws are partic-

ularly useful.

� Left- and right-cancellation: Whenever a�b D a�c, it follows that b D c, and this

is the left-cancellation law. Similarly, whenever b � a D c � a, it follows that b D c,

and this is the right-cancellation law.

� Uniqueness of identity: A group has one and only one identity element. This means

that we can speak of the identity, which we denote either as e or I .

� Uniqueness of inverses: Any group element has one and only one inverse. Thus the

notation a�1 denotes without ambiguity the inverse of the element a.

Exercise 5 asks you to prove these properties.

1A binary operation is a function that operates on two objects at a time, like addition, subtraction, etc. For-
mally, a binary operation on G is a function G � G �! G.
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The symmetric group

We now prove that the set Sn together with function composition deserves the name

“group.” Most of the proof uses results that we proved in Section 1.3 and its Exercises.

Theorem 5.2.2 (symmetric group) For any integer n > 0, .Sn; ı/ is a group. That is, the

set of all permutations of Œn� is a group under the operation of function composition.

Proof: Let n be a positive integer.

Closure: Theorem 1.3.5 (page 30) says that the composition of two bijections Œn� �!
Œn� is also a bijection Œn� �! Œn�, so Sn is closed under function composition.

Associativity: Theorem 1.3.6 (page 30) says that function composition is associative,

so Sn has the associative property.

Existence of an identity: Define e W Œn� �! Œn� by e.j / D j for all j 2 Œn�. This is

clearly a bijection Œn� �! Œn� so e 2 Sn. Let f 2 Sn. Then f ı e D f and e ı f D f

because f
�

e.j /
�

D f .j / and e
�

f .j /
�

D f .j / for all j 2 Œn�. Therefore Sn has an

identity element, namely the “identity permutation.”

Existence of inverses: Exercise 8 (page 32) shows that the inverse of a bijection � W
Œn� �! Œn� is itself a bijection ��1 W Œn� �! Œn�. Moreover � ı��1 D e and ��1 ı� D e

where e is the identity permutation defined in the last paragraph. Therefore each element

of Sn has an inverse in Sn.

A group G is a finite group provided that G is a finite set. In that case jGj is the order

of G. If G is an infinite set, then the group has infinite order.

Question 190 What is the order of Sn?

Symmetries of an object

It is the symmetries of an object (like the square or the 3 � 3 grid of Section 5.1) that we

model using groups. The group elements describe all ways that we can physically reorient

the object without changing its structure.

Symmetries of the square

In what ways can we pick up the square of Section 5.1, move it around, and then put it

back down in the same place? Since we will be coloring the corners of the square, let us

number the corners (as in Figure 5.1) so that we can keep track of how each motion affects

each corner’s location.

There are eight such motions of the square in space: leave it unchanged, rotate the

square clockwise by a multiple of 90ı, or flip it in three dimensions about one of its four

axes of symmetry. The identity motion I leaves the square unmoved. Label the rotation

motions as R1, R2, and R3, corresponding to the multiple of 90ı that the square rotates—

either 90ı or 180ı or 270ı.

The square has two axes of symmetry that pass through opposing corners (1 and 3, and

2 and 4). Call the motions that flip the square about these axes of symmetry F1 and F2,

respectively. The square also has two axes of symmetry that pass through the midpoints of

opposing sides (either sides 1-2 and 3-4, or sides 2-3 and 1-4). Label the first motion F1;2

and the second F2;3. Figure 5.2 shows how these motions act on the corners, and Table 5.1

shows each of these motions written as a permutation in S4.
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1 2

34

1
23

4

1 2

34

12

3 4

1 2

34 1
2 3

4

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

1

2 3

4

1

23

4

12

3 4

1 2

34

I

R1

R2

R3

F1

F2

F1,2

F2,3

Figure 5.2. Symmetries of the square as they act on its corners.

motion two-line form product of disjoint cycles

I

�

1 2 3 4

1 2 3 4

�

.1/.2/.3/.4/

R1

�
1 2 3 4

2 3 4 1

�

.1 2 3 4/

R2

�
1 2 3 4

3 4 1 2

�

.1 3/.2 4/

R3

�

1 2 3 4

4 1 2 3

�

.1 4 3 2/

F1

�
1 2 3 4

1 4 3 2

�

.1/.2 4/.3/

F2

�

1 2 3 4

3 2 1 4

�

.1 3/.2/.4/

F1;2

�
1 2 3 4

2 1 4 3

�

.1 2/.3 4/

F2;3

�
1 2 3 4

4 3 2 1

�

.1 4/.2 3/

Table 5.1. Symmetries of the square as permutations in S4.

For example, the F1;2 motion that “flips” (or rotates in three dimensions) the square

about the axis passing through the midpoints of sides 1-2 and 3-4 has the net effect of

switching the places of corners 1 and 2, and switching the places of corners 3 and 4. We

can record its action on the corners as the permutation

F1;2 D
�

1 2 3 4

2 1 4 3

�

D .1 2/.3 4/
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in S4. Similarly, the R3 motion that rotates the square clockwise in the plane by 270ı

moves corner 1 to corner 4’s original location, corner 2 to corner 1’s original location,

corner 3 or corner 2’s original location, and corner 4 to corner 3’s original location. We can

record its action on the corners as the permutation

R3 D
�

1 2 3 4

4 1 2 3

�

D .1 4 3 2/

in S4.

Symmetries of the 3 � 3 grid

For the 3 � 3 grid of Section 5.1, there are only four motions: do nothing (the identity

I ), rotate 90 degrees clockwise (R1), rotate 180 degrees clockwise (R2), and rotate 270

degrees clockwise (R3). Though this problem and the previous one both involve squares,

the grid in this problem is not allowed to move in three dimensions: think of it as drawn on

a piece of paper, which can only be reoriented with two-dimensional motions.

Figure 5.3 shows how these motions act on the numbered squares, and Table 5.2 shows

each of these motions written as a permutation in S9. Explanations similar to those used

for the square also apply here, using the original numbering of the nine squares as the

reference point. Notice that all four motions leave square 5 fixed.

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1
2

3

4
5

6

7
8

9

I

R1

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

123

456

789

1
2

3

4
5

6

7
8

9

R2

R3

Figure 5.3. Symmetries of the 3 � 3 grid as they act on its squares.

motion two-line form product of disjoint cycles

I

�

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

�

.1/.2/.3/.4/.5/.6/.7/.8/.9/

R1

�
1 2 3 4 5 6 7 8 9

3 6 9 2 5 8 1 4 7

�

.1 3 9 7/.2 6 8 4/.5/

R2

�
1 2 3 4 5 6 7 8 9

9 8 7 6 5 4 3 2 1

�

.1 9/.2 8/.3 7/.4 6/.5/

R3

�

1 2 3 4 5 6 7 8 9

7 4 1 8 5 2 9 6 3

�

.1 7 9 3/.2 4 8 6/.5/

Table 5.2. Symmetries of the 3 � 3 grid as permutations in S9.
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Subgroups

The eight symmetries of the square fI; R1; R2; R3; F1; F2; F1;2; F2;3g form a proper sub-

set of the 4Š D 24 permutations in S4. Most permutations in S4, then, do not correspond

to rearrangements of the corners of the square that we can realize by picking it up, rotating

and/or flipping it, and putting it back down. For example, the permutation .1/.2/.3 4/ does

not correspond to action on the corners by one of these motions: we cannot, through a mo-

tion that doesn’t involve the disassembly of the stick-styrofoam ball construction, switch

the locations of corners 3 and 4 and at the same time leave corners 1 and 2 in their original

locations. For this reason, the eight motions we use are sometimes called the rigid motions

of the square.

Likewise, the four symmetries of the 3� 3 grid fI; R1; R2; R3g form a small subset of

the 9Š D 362;880 permutations in S9.

But the results of group theory still apply to the 8- and 4-subsets given above, even

though they are only small subsets of the known groups S4 and S9. This is because each is

a subgroup—a group living inside another group.

Definition 5.2.3 (subgroup) Let .G; �/ be a group. A subgroup of G is a pair .H; �/ such

that H � G and .H; �/ is a group. We write H 6 G to indicate that H is a subgroup of

G.

We use the symbol 6 to distinguish it from�, because as we will see not every subset of a

group is a subgroup. The context in which the subgroup symbol appears should distinguish

it from ordinary less-than-or-equal-to. It is always true that feg 6 G for any group G. This

is the trivial subgroup.

The subgroup test

Practically, the test for whether a particular subset of a finite group is a subgroup is straight-

forward: just check that the subset is closed under the group operation. In the proof of the

following theorem, and elsewhere, the notation an refers to repeated application of the

group operation. For example, a2 D a � a and a3 D a � a � a. Also, a1 D a and a0 D e.

Theorem 5.2.4 Let .G; �/ be a finite group, and let H be a nonempty subset of G. Then

H 6 G if and only if H is closed under �.

Proof: Assume that .G; �/ is a finite group and that H is a nonempty subset of G.

(H)) Assume that H 6 G. Then .H; �/ is a group, so it is closed under �.

((H) Assume that H is closed under �. We must prove that .H; �/ has the three

remaining group properties.

Associativity: Let a; b; c 2 H . Then a; b; c 2 G since H � G. Since G is a group

and therefore associative, it follows that a � .b � c/ D .a � b/ � c. Therefore H has the

associative property.

Existence of an identity: Suppose jH j D m for some positive integer m. If m D 1

then H D fag for some a 2 G. Since H is closed, it follows that a�a D a. Now, working

this equation in the group G, left-cancellation of a�a D a�e implies that a D e. Therefore

H D feg and so H is the trivial subgroup of G.

Now assume that m > 1. Let a 2 H . Since H is closed under �, the mC 1 elements

a, a2, a3, . . . , amC1 (5.1)
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all belong to H . But because jH j D m this list must repeat: ai D aj for some integers i

and j satisfying 1 6 i < j 6 mC1. Rewrite aj D ai �aj �i and note that 0 < j � i < m.

This means

ai � e D ai � aj �i :

Working in the group G, left-cancellation implies e D aj �i where e is the identity element

of G. But since aj �i 2 H , we have shown that e 2 H and hence that H contains an

identity.

Existence of inverses: Let a 2 H . Definition 5.2.1 requires us to find some b 2 H

satisfying a � b D e and b � a D e. Form the same list (5.1) from which we learned that

aj �i D e. This means that if we choose b WD aj �i�1 2 H (where a0 WD e) then

a � b D a � aj �i�1 D aj �i D e;

and similarly b � a D e. Therefore every element of H contains an inverse that belongs to

H . This completes the proof that H 6 G.

In the case of an infinite group, the subgroup test requires more than just checking

closure. See Exercise 11.

The symmetries of a square

Now that we have the subgroup test, a systematic way to check that

fI; R1; R2; R3; F1; F2; F1;2; F2;3g 6 S4

is to use a group table, which shows the result of composing any two permutations that

correspond to the actions of the eight motions on the corners. Table 5.3 gives this group

table. The entry in any row and column is the net motion that results from applying first

the column’s motion followed by the row’s motion.

For example, what is the motion F2;3 ı R1 that results from first rotating the square

clockwise by 90 degrees and then flipping it about its horizontal axis? Since

F2;3

�

R1.1/
�

D F2;3.2/ D 3

F2;3

�

R1.2/
�

D F2;3.3/ D 2

F2;3

�

R1.3/
�

D F2;3.4/ D 1

F2;3

�

R1.4/
�

D F2;3.1/ D 4;

ı I R1 R2 R3 F1 F2 F1;2 F2;3

I I R1 R2 R3 F1 F2 F1;2 F2;3

R1 R1 R2 R3 I F1;2 F2;3 F2 F1

R2 R2 R3 I R1 F2 F1 F2;3 F1;2

R3 R3 I R1 R2 F2;3 F1;2 F1 F2

F1 F1 F2;3 F2 F1;2 I R2 R3 R1

F2 F2 F1;2 F1 F2;3 R2 I R1 R3

F1;2 F1;2 F1 F2;3 F2 R1 R3 I R2

F2;3 F2;3 F2 F1;2 F1 R3 R1 R2 I

Table 5.3. The group table for the symmetries of the square.
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it follows that

F2;3 ıR1 D
�

1 2 3 4

3 2 1 4

�

D F2:

Therefore the entry in F2;3’s row and R1’s column is F2. Likewise,

R1

�

F2;3.1/
�

D R1.4/ D 1

R1

�

F2;3.2/
�

D R1.3/ D 4

R1

�

F2;3.3/
�

D R1.2/ D 3

R1

�

F2;3.4/
�

D R1.1/ D 2;

so R1 ı F2;3 D F1. One thing to notice is that the order in which we apply the motions

matters! This group is not commutative.

It is straightforward but tedious to verify the remaining 62 entries of the group table.

Because the net result of applying any two motions in succession equals one of the eight

original motions, we have a subgroup of S4 by Theorem 5.2.4.

Question 191 Is fI; R1; R2; R3; F1;2g a subgroup of S4? Explain why or why not.

The symmetries of the 3 � 3 grid

The group table for the grid problem is smaller and it appears in Table 5.4. Although this

group table just equals the upper left corner of the group table for the symmetries of the

square, remember that these four motions are permutations in S9 and not in S4.

Question 192 Is the subgroup shown in Table 5.4 commutative?

ı I R1 R2 R3

I I R1 R2 R3

R1 R1 R2 R3 I

R2 R2 R3 I R1

R3 R3 I R1 R2

Table 5.4. The group table for the symmetries of the 3 � 3 grid.

The dihedral and cyclic groups

The dihedral group

Instead of coloring the corners of a square, consider coloring the corners of a regular pen-

tagon, hexagon, or (in general) regular n-gon, where n > 3. If we allow any rigid, three-

dimensional motion to determine a reorientation of that figure, then what is the size of the

symmetry group?

Label the vertices of a regular n-gon using the set Œn� and then orient it so that vertex 1

sits at the top. For n D 5 and n D 6 the labelings are:

1

2

34

5

1

2

3

4

5

6
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Like the square (a regular 4-gon), we can perform two-dimensional rotations. Including

the identity element I (the 0ı rotation) there are five possible rotations for the pentagon

and six for the hexagon. Label these I; R1; R2; R3; R4 in the case of the pentagon and

I; R1; R2; R3; R4; R5 in the case of the hexagon. The rotation Rj is a rotation by 360j=n

degrees.

Question 193 What are the permutations in S5 (for the pentagon) and S6 (for the hexagon)

that correspond to these rotation motions?

Now there are the three-dimensional flip motions. The pentagon has five axes of sym-

metry. Each such axis passes through a vertex and the midpoint of the side directly op-

posite that vertex. As such, a vertex uniquely identifies an axis of symmetry. Label the

corresponding flip motions F1; F2; F3; F4; F5 as shown below:

1

2

34

5

1

2

34

5

1

2

34

5

1

2

34

5

1

2

34

5
F3 F4 F5F1

F2

(The above diagram shows the “before” positions of the pentagon as well as the axes

of symmetry, unlike Figure 5.2 which shows both the before and after positions for the

square.)

Question 194 What are the permutations in S5 that correspond to these five flip motions?

The hexagon has six axes of symmetry. Three of them pass through pairs of opposing

vertices: 1 and 4, 2 and 5, 3 and 6. Label the corresponding flip motions as F1; F2; F3. The

other three pass through pairs of opposing sides: 1-2 and 4-5; 2-3 and 5-6; and 3-4 and 6-1.

Label the corresponding flip motions F1;2; F2;3; F3;4 as shown below:

F3F1
F2

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

F1,2 F2,3 F3,4

Question 195 What are the permutations in S6 that correspond to these six flip motions?

The parity of n, the number of corners, accounts for the difference in the nature of the axes

of symmetry in the pentagon and the hexagon.

As you might expect, the symmetry group of the regular n-gon, where n > 3, has n

rotation motions (including the identity) and n flip motions. As such it has order 2n and

is known as the dihedral group of the regular n-gon, notated Dn. It is composed of the n

rotations I; R1; R2; : : : ; Rn�1 and n flip motions as follows. If n is odd, they are

F1; F2; : : : ; Fn
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where the flip Fi is about the axis of symmetry passing through vertex i and the midpoint

of the side directly opposite. If n is even, they are

F1; F2; : : : ; F n
2
; F1;2; F2;3; : : : ; F n

2 ; n
2 C1

where the flip Fi is about the axis passing through vertex i and the vertex directly opposite,

and the flip Fi;iC1 is about the axis passing through the midpoint of the side joining vertices

i and i C 1, and the side directly opposite.

The symmetry group of the square that we gave earlier is the dihedral group D4 of

order 8. In general, the action of the symmetries of the regular n-gon on its corners, when

thought of as permutations in Sn, indeed forms a subgroup of Sn of order 2n. That is,

Dn 6 Sn and jDnj D 2n.

The cyclic group

One way to define the cyclic group of order n, denoted by Cn, is as the subgroup of Dn

that consists of the identity together with the n�1 rotation operations on the regular n-gon.

As such, it is essentially the same group as .Zn;˚/ where Zn WD f0; 1; : : : ; n � 1g is the

set of residues modulo n and˚ is addition modulo n.

For example, the group table for C4 is shown in Table 5.4. The group table for .Z4;˚/

is

˚ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Except for the names of the group elements, the two groups behave in exactly the same

manner. This illustrates the concept of group isomorphism which, while very important in

group theory, we won’t cover.

Summary

For the purposes of counting, and especially counting when there are symmetries of a

physical object to consider, the most important groups are

� the symmetric group, denoted by Sn, which is the set of all permutations of Œn�, or

equivalently bijections Œn� �! Œn�, under the operation of function composition;

� the dihedral group, denoted by Dn, which is the set of symmetries of the regular

n-gon; and

� the cyclic group, denoted by Cn, which is the set of rotational symmetries of the

regular n-gon, or equivalently the set of integers modulo n with addition.

The groups Dn and Cn are each subgroups of Sn.

Exercises

1. How many cycles does the permutation

�
1 2 3 4 5 6 7 8

6 3 2 8 7 1 5 4

�

have?

2. How may different permutations in S5 have exactly two cycles? Exactly three cycles?
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3. Let � WD .1 3 5/.2/.4 6/ and � WD .1 6 5 4 3 2/ be permutations in S6. Find

(a) ��1 and ��1,

(b) � ı � and � ı � ,

(c) ��1 ı .� ı �2/, and

(d) ��2 and ��3

4. Explain why .R; �/ is not a group, where R is the set of real numbers and � is multipli-

cation. Then, make a small change to the set R so that it is a group under multiplication

and prove that it is so.

5. Let .G; �/ be a group. Prove the left- and right-cancellation laws. Then, use them to

prove that a group’s identity element is unique, and that the inverse of any a 2 G is

unique.

6. Let .G; �/ be a finite group. Prove that every row of its group table is a permutation

of G.

7. Let .G; �/ be a finite group of order n, and let a 2 G. It is true that the list a; a2; a3; : : : ;

anC1 must contain a repeat. Prove that a is the first repeated element.

8. In addition to numbering the corners of the pentagon, label the sides a; b; c; d; e.

Describe how the dihedral group D5 acts on the sides of the pentagon. Write the

result of each motion as a permutation of fa; b; c; d; eg and make a table similar to

Table 5.1. Then do the same for the hexagon.

9. Find the symmetry group, as a subgroup of S9, for the following stick-styrofoam ball

structure free to move in space. (Corners are numbered for convenience.)

1 2

4

3

7

5 6

8 9

10. Repeat the previous exercise, but for a 4 � 4 structure.

11. Let .G; �/ be a group (not necessarily finite), and let H be a nonempty subset of G.

Prove: H 6 G if and only if (1) H is closed under �, and (2) whenever a 2 H , it

follows that a�1 2 H .

12. Consider the symmetric group .S5; ı/ and one of its elements � WD .1 3 4/.2 5/.

(a) Define �0 WD e, the identity permutation, and �1 WD � . Compute �2 WD � ı � ,

�3 WD � ı � ı � , and so on until this list starts to repeat.

(b) Let the set H consist of the permutations that you found in part (a). Use a group

table to show that H is a subgroup of S5.

13. Let .G; �/ be a group, and fix any � 2 G. Prove that the set

h�i WD f�n W n 2 Zg
is a subgroup of G. (The set h�i is called the cyclic subgroup of G generated by

� . In the previous exercise you found the cyclic subgroup of S5 generated by the

permutation .1 3 4/.2 5/.)
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14. Continuing the previous exercise, prove that the cyclic subgroup h�i is commutative.

15. This exercise outlines a proof of Lagrange’s theorem which is an important result in

group theory. Let .G; �/ be a group.

(a) Let H be a subgroup of G and let a 2 G. The right coset of H in G containing

a is the set

Ha WD fh � a W h 2 Hg:

Prove: if a; b 2 G, then the function f W Ha �! Hb given by f .h� a/ D h� b

is a bijection.

(b) Define a relation � on G by the following: a � b if and only if a � b�1 2 H .

Prove: � is an equivalence relation on G.

(c) Prove: the equivalence classes of the equivalence relation in part (b) are the right

cosets of H in G.

(d) Combine your results in parts (a)-(c) to prove Lagrange’s theorem: If .G; �/ is a

finite group and H is a subgroup of G, then jH j divides jGj.
(e) Explain how Lagrange’s theorem gives an alternative way to answer Question

191 on page 196.

5.3 Orbits and fixed point sets

This section bridges the gap between group theory and counting. We can think of the

symmetry group of the square (i.e., the dihedral group D4) as it acts on certain features

of the square: the corners, the edges, the possible colorings of the corners, the possible

colorings of the edges, etc. In fact, we have already done this for the corners and it is

shown in Figure 5.2 and Table 5.1. We numbered the corners because those are what we

wish to color.

Square-coloring

Recall the square-coloring example of Section 5.1. As it acts on the four numbered corners

of the square, the F1 D .1/.2 4/.3/ operation leaves corners 1 and 3 fixed but switches

the locations of corners 2 and 4. But as it acts on the 16 colorings of the square’s corners

pictured in Figure 5.1, it does this:

F1 D
�

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

f1 f2 f5 f4 f3 f9 f8 f7 f6 f10 f11 f12 f15 f14 f13 f16

�

:

For example, flipping the colored square labeled f5 about the axis joining corners 1 and 3

results in the colored square f3. This means F1.f5/ D f3. The R1 D .1 2 3 4/ operation

acts on the colorings as follows:

R1 D
�

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

f1 f3 f4 f5 f2 f7 f8 f9 f6 f11 f10 f13 f14 f15 f12 f16

�

:

Notice that each is a bijection on the set of colorings.
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Grid-coloring

In the grid-coloring example of Section 5.1, the action of the symmetry group on the nine

squares comprising the grid is shown in Figure 5.3 and Table 5.2. But it also acts on the

29 D 512 possible colorings of the nine squares. Unlike the square example, explicitly

enumerating all possible colorings is too cumbersome.

But, like the square example, each of the four operations I , R1, R2, and R3 produces

a bijection on the set of colorings.

Group acting on functions

Group theory provides a useful tool—the Cauchy-Frobenius-Burnside theorem—that

solves both the square-coloring and grid-coloring problems with comparable effort, even

though there are more initial black-white colorings of the grid than the square (512 vs. 16).

The key concept is that of a group acting on a set of functions. In our examples, the func-

tions are colorings and for many problems it suffices to have an intuitive notion for what

group action means. Developing the theory, however, requires a precise definition.

Definition 5.3.1 (group acting on functions) Let A and C be finite sets, and let G be a

group of permutations of A. For the set C A of functions f W A �! C , the action of G on

C A is defined by

�

�.f /
�

.a/ WD f
�

��1.a/
�

for each � 2 G and a 2 A.

In the square example, A D Œ4� is the set of labeled corners, C D fblack; whiteg is the set

of colors, and G is the dihedral group D4 as it acts on the set A of corners.

The definition’s purpose is to make precise what, say, R1.f2/ means. After all, R1

describes how the group acts on the corners and not the colorings. Intuitively, saying

R1.f2/ D f3 makes sense because rotating the coloring f2 clockwise by 90ı produces the

coloring f3. (Refer back to Figure 5.1.) The definition defines what the function R1.f2/

is. Since R�1
1 D R3, the definition says

R1

�

f2.1/
�

D f2

�

R�1
1 .1/

�

D f2

�

R3.1/
�

D f2.4/ D black D f3.1/

R1

�

f2.2/
�

D f2

�

R�1
1 .2/

�

D f2

�

R3.2/
�

D f2.1/ D white D f3.2/

R1

�

f2.3/
�

D f2

�

R�1
1 .3/

�

D f2

�

R3.3/
�

D f2.2/ D black D f3.3/

R1

�

f2.4/
�

D f2

�

R�1
1 .4/

�

D f2

�

R3.4/
�

D f2.3/ D black D f3.4/:

So indeed R1.f2/ D f3 because f3 is the coloring that labels corners 1-4 in the order

black-white-black-black.

Question 196 Use the same method to find F2.f11/.

Two important concepts

Orbit

As our goal is to count inequivalent colorings, we must make our notion of equivalence

precise. In the square-coloring example, we consider two colorings equivalent provided

that we can “reach” one from the other via group operations.

For example, colorings f7 and f8 are equivalent because the 90-degree rotation opera-

tion takes one coloring to the other: R1.f7/ D f8. It is also the case that F1.f7/ D f8 and
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202 5. Counting Under Equivalence

that R3.f8/ D f7, but the point is that there is at least one way to get from f7 to f8 or vice

versa.

When a group acts on a set of functions (e.g., colorings) the orbit of a function is the

set of all functions “reachable” by applying the group operations to the original function.

Definition 5.3.2 (orbit) Let A and C be finite sets, and let G be a group of permutations

of A. For any f 2 C A, the orbit of f under G is the set

orbG.f / WD
˚

�.f / W � 2 G
	

:

For example, to find the orbit of coloring f7, we apply each of the eight group operations

to f7 and gather the results:

I.f7/ D f7 R1.f7/ D f8 R2.f7/ D f9 R3.f7/ D f6

F1.f7/ D f8 F2.f7/ D f6 F2;3.f7/ D f7 F1;2.f7/ D f9:

This means the orbit of f7, namely orbD4
.f7/, equals

˚

f6; f7; f8; f9

	

. As other examples,

orbD4
.f10/ D

˚

f10; f11

	

and orbD4
.f1/ D

˚

f1

	

.

Question 197 What is the orbit of f15?

Notice that each orbit contains colorings of the corners of the square that we do indeed

consider equivalent.

Question 198 In general, explain why any function f is in its own orbit.

Fixed point set

Given a group operation, its fixed point set is the set of functions that are left unchanged

by the operation.

Definition 5.3.3 (fixed point set) Let A and C be finite sets, and let G be a group of per-

mutations of A. For any � 2 G, the fixed point set of � in G is the set

fixG.�/ WD
˚

f 2 C A W �.f / D f
	

:

In the square example, the only colorings unchanged by the R1 motion are the all-black

coloring f1 and the all-white coloring f16. Therefore

fixD4
.R1/ D

˚

f1; f16

	

:

The colorings unchanged by the F1;2 operations are

fixD4
.F1;2/ D

˚

f1; f6; f8; f16

	

:

Question 199 In general, what group element � has fixG.�/ D C A, always?

The goal: count the orbits

We now prove that the orbits partition the set of functions acted upon by the group. Once

accomplished, we then re-cast our original goal of counting the inequivalent arrangements

as that of counting the orbits.

Let A and C be finite sets and let G be a group of permutations of A. Let f 2 C A. Our

first observation is that every orbit is nonempty. This follows from your work in Question

198, in which you observed that any function is in its own orbit.
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A second observation follows almost immediately. Because f belongs to its own orbit,

this means that every element of C A is in some orbit. Therefore the union of the orbits

equals C A, the set of functions acted upon by the group.

To complete the proof that the orbits partition C A, we show that the set of orbits con-

tains disjoint sets. We accomplish this by proving that any two orbits that are not disjoint

must be equal.

Theorem 5.3.4 Let A and C be finite sets, and let G be a group of permutations of A.

Then the orbits of C A partition C A. That is, the set

O WD
˚

orbG.f / W f 2 C A
	

is a partition of C A.

Proof: Let A and C be finite sets, and let G be a group of permutations of A. We have

already shown that O contains nonempty sets whose union is C A. We now prove that these

sets are disjoint.

Assume that orbG.f1/ and orbG.f2/ are two orbits that are not disjoint, and let g be

any function belonging to both orbits. By Definition 5.3.2, this means that g D �1.f1/ and

g D �2.f2/ for some �1; �2 2 G. We prove that orbG.f1/ D orbG.f2/ by showing that

each is a subset of the other.

Let h 2 orbG.f1/. This means h D �.f1/ for some � 2 G. But because �1.f1/ D
�2.f2/, we can write f1 D ��1

1

�

�2.f2/
�

. Therefore

h D �.f1/ D �
�

��1
1

�

�2.f2/
�
�

D .� ı ��1
1 ı �2

„ ƒ‚ …

DW�

/.f2/:

By closure of the group G, the operation � belongs to G. This means that h D �.f2/

where � 2 G. Therefore h 2 orbG.f2/, and hence orbG.f1/ � orbG.f2/.

The proof that orbG.f2/ � orbG.f1/ is similar and left to you in the next question.

Therefore O must contain disjoint sets. This completes the proof that the orbits partition

C A.

Question 200 What are the details that prove orbG.f2/ � orbG.f1/?

In the square-coloring example of Section 5.1, we noted that there are only six inequiv-

alent colorings. This means that there are six orbits.

Question 201 Write down the six orbits for the square example.

The Cauchy-Frobenius-Burnside theorem

In the interest of illustrating how to count orbits in an efficient manner, we jump right to

the statement of the theorem that allows us to do so. We prove it in Section 5.5.

Theorem 5.3.5 (Cauchy-Frobenius-Burnside) Let A and C be finite sets, let G be a

group of permutations of A, and let O be the set of orbits of C A. Then

jOj D 1

jGj
X

�2G

ˇ
ˇfixG.�/

ˇ
ˇ:

Applying the Cauchy-Frobenius-Burnside (CFB) theorem, then, amounts to determining

the size of each fixed point set. Doing so requires knowing the cycle structure of each

group operation. Let’s use it to finish our two examples.
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Finishing the square-coloring example

In Table 5.1 on page 192, we wrote each of the eight group operations as a product of

disjoint cycles. This allows for easy computation of the sizes of the fixed point sets.

Here is the idea. To count the colorings that a certain group operation leaves fixed, it

suffices to count the number of ways to assign a color to each cycle of the operation. This is

because every corner in a given cycle must receive the same color in order for the coloring

to remain fixed under the operation.

For example, the R2 operation can be written .1 3/.2 4/, meaning that it swaps corners

1 and 3, and it swaps corners 2 and 4. Therefore, corners 1 and 3 must receive the same

color, as must corners 2 and 4. There are two choices of colors (black or white) for each,

so
ˇ
ˇfixD4

.R2/
ˇ
ˇ D 22. The identity operation I can be written .1/.2/.3/.4/. Therefore

any corner can receive any color because any coloring remains fixed under the identity

operation. This means
ˇ
ˇfixD4

.I /
ˇ
ˇ D 24.

In general, with two colors available, the number of colorings left fixed by a given

operation equals 2c.�/ where c.�/ is the number of disjoint cycles in the permutation � .

The following table summarizes this information.

motion � product of disjoint cycles
ˇ

ˇfixD4
.�/

ˇ

ˇ

I .1/.2/.3/.4/ 24

R1 .1 2 3 4/ 21

R2 .1 3/.2 4/ 22

R3 .1 4 3 2/ 21

F2;3 .1 4/.2 3/ 22

F1;2 .1 2/.3 4/ 22

F1 .1/.2 4/.3/ 23

F2 .1 3/.2/.4/ 23

By the CFB theorem the number of orbits, and therefore inequivalent colorings, equals

1

jGj
X

�2G

ˇ
ˇfixG.�/

ˇ
ˇ D 1

8

�

24 C 21 C 22 C 21 C 22 C 22 C 23 C 23
�

D 6:

Of course, this agrees with our initial answer in Section 5.1.

Question 202 Find the answer if we had three colors available instead of two.

Finishing the grid-coloring example

Applying the same ideas to the grid-coloring example of Section 5.1, we arrive at the

following table. The relevant group is C4, the cyclic group of order 4 as it acts on the nine

squares of the grid.
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motion � product of disjoint cycles
ˇ

ˇfixC4
.�/

ˇ

ˇ

I .1/.2/.3/.4/.5/.6/.7/.8/.9/ 29

R1 .1 3 9 7/.2 6 8 4/.5/ 23

R2 .1 9/.2 8/.3 7/.4 6/.5/ 25

R3 .1 7 9 3/.2 4 8 6/.5/ 23

By the CFB theorem, the number of inequivalent colorings equals

1

4

�

29 C 23 C 25 C 23
�

D 140:

Computing the size of a fixed point set

Our technique of computing the sizes of the fixed point sets relies on the following result.

In the language of colorings, it says that a group operation fixes a coloring exactly when

each cycle of the group operation is monochromatic.

Theorem 5.3.6 Let A and C be finite sets, and let G be a group of permutations of A. For

any f 2 C A and � 2 G, it follows that �.f / D f if and only if f is constant on every

cycle of � .

The proof, which Exercise 4 asks you to provide, makes use of Definition 5.3.1.

Summary

Let G be a group acting on a set of functions C A. So far, we can think of these functions

as colorings.

� The orbit of f 2 C A is a subset of C A. It contains the elements of C A that are

“reachable” from f via the group operations.

� The fixed point set of � 2 G is a subset of C A. It contains the elements of C A that

are unchanged by � .

The Cauchy-Frobenius-Burnside theorem allows calculation of the number of orbits in

terms of the sizes of the fixed point sets. In the case of our examples, it was possible to

calculate the size of each fixed point set by first writing each group element � as a product

of disjoint cycles.

Exercises

1. Consider the square example, but where each corner can be colored black, white or

red. Let f be the coloring that colors corners 1 and 2 black, corner 3 white, and corner

4 red. Write down all of the colorings in the orbit of f .

2. How many ways are there to construct the figure in Exercise 9 of Section 5.2 if each

ball can be one of k colors? Apply the CFB theorem.

3. In how many different ways can we construct a square using four sticks and four

indistinguishable styrofoam balls, where each stick is either black or white? (That is,

we are coloring edges and not corners.)

(a) Label the square’s edges a, b, c, d . Find the cycle structure of each element in

the dihedral group as it acts on the edges and then apply the CFB theorem.
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(b) Now change the question to: In how many different ways can we construct a

square using four sticks and four styrofoam balls, where each stick is either black

or white and each ball is either black or white? Answer this using the CFB the-

orem. (Hint: The dihedral group now acts on the set f1; 2; 3; 4; a; b; c; dg of cor-

ners and edges.)

4. Prove Theorem 5.3.6.

5. This exercise shows why the CFB theorem is a generalization of the equivalence prin-

ciple. Consider counting the number of different ways we can seat five people around

a circular table. Initially we assume the seats are numbered or otherwise distinguish-

able.

(a) What is the symmetry group that acts on the seatings?

(b) How many seatings are left fixed by the identity?

(c) Explain why zero seatings are left fixed by each of the rotation operations.

(d) Use the CFB theorem to find the number of different seatings when the seats are

indistinguishable.

6. How many different stacks of 8 coins can be made, where the coins all have the same

size but are either gold or silver? The stack can either be left alone or turned upside-

down.

7. Generalize the previous problem to an n-coin stack where k different types of coins

are used. (Hint: The parity of n matters.)

Travel Notes

The Cauchy-Frobenius-Burnside theorem is often called Burnside’s lemma or occasionally

Burnside’s theorem. All of these names are apparently wrong. According to research done

by Neumann (1979), Cauchy first proved the result for a special case in 1845 and then

Frobenius proved it in its current form in 1887. The link with Burnside did not occur until

the 1960s when some authors using the result found it in Burnside’s 1911 book on group

theory and, in the absence of any reference to its origin, attributed it to Burnside. The use

of the name “Burnside’s lemma” gradually became commonplace.

Rightly or wrongly, many now know the result as Burnside’s lemma so we choose to

include Burnside’s name. Neumann’s paper (“A lemma that is not Burnside’s”) is worth

reading. He suggests calling it the Cauchy-Frobenius lemma.

5.4 Using the CFB theorem

Now that we have answered the two counting questions posed in Section 5.1, we devote this

section to illustrating how to apply the Cauchy-Frobenius-Burnside theorem from scratch

to answer four additional counting questions. We defer the proof of the CFB theorem to

the next section.

Example 1: coloring the faces of a triangular prism

A triangular prism has an equilateral triangle for its base and top, and rectangular sides.

In how many different ways can we color the five faces of this prism if each face can be

painted using one of k colors?
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S3S2

B

T

S1

Front view

T

S3S2

S1

Top view

Figure 5.4. A triangular prism.

A picture of the triangular prism appears in Figure 5.4, with top T , bottom B , and

sides S1, S2, and S3. First we determine the symmetry group G of the prism. There are

three clockwise rotations about the vertical axis that passes through the centers of the top

and bottom faces: the identity I , the 120ı rotation R1, and the 240ı rotation R2. We can

also pass an axis through the center of each side (perpendicular to that side) and rotate the

prism by 180ı about that axis; we call these operations F1, F2, and F3 corresponding to

the axis that passes through the center of side S1, S2, and S3, respectively. The relevant

information required to apply the CFB theorem is given in the table below.

motion � product of disjoint cycles
ˇ

ˇfixG .�/
ˇ

ˇ

I .B/.T /.S1/.S2/.S3/ k5

R1 .B/.T /.S1 S2 S3/ k3

R2 .B/.T /.S1 S3 S2/ k3

F1 .B T /.S1/.S2 S3/ k3

F2 .B T /.S1 S3/.S2/ k3

F3 .B T /.S1 S2/.S3/ k3

For example, the F2 operation exchanges the bottom and top face; it leaves face 2 fixed

but exchanges faces 1 and 3. Thus F2 D .B T /.S1 S3/.S2/. We can assign one of k colors

to each of the three cycles, so
ˇ
ˇfixG.F2/

ˇ
ˇ D k3. The entries for the other five operations

follow similarly.

By the CFB theorem, the number of inequivalent colorings is

1

6

�

k5 C k3 C k3 C k3 C k3 C k3
�

D 1

6

�

k5 C 5k3
�

:

(On a side note, this also shows that k5 C 5k3 is divisible by 6 for k > 1.)

Example 2: counting necklaces

How many different six-bead necklaces are possible where each bead can be one of three

colors? How many different seven-bead necklaces are possible where each bead can be one

of three colors?



“master” — 2010/9/20 — 12:30 — page 208 — #226
i

i

i

i

i

i

i

i
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motion � product of disjoint cycles
ˇ

ˇfixD6
.�/

ˇ

ˇ

I .1/.2/.3/.4/.5/.6/ 36

R1 .1 2 3 4 5 6/ 31

R2 .1 3 5/.2 4 6/ 32

R3 .1 4/.2 5/.3 6/ 33

R4 .1 5 3/.2 6 4/ 32

R5 .1 6 5 4 3 2/ 31

F1 .1/.2 6/.3 5/.4/ 34

F2 .1 3/.2/.4 6/.5/ 34

F3 .1 5/.2 4/.3/.6/ 34

F1;2 .1 2/.3 6/.4 5/ 33

F2;3 .1 4/.2 3/.5 6/ 33

F3;4 .1 6/.2 5/.3 4/ 33

Table 5.5. Cycle structure for the six-bead necklace.

The symmetry group of each necklace is the same as that of the regular 6-gon or 7-gon,

respectively. As such, we work with the dihedral groups D6 and D7.

For the six-bead necklace arrange the necklace in a circle with the beads equally spaced,

and numbered as follows:

1

4

6

5 3

2

Table 5.5 shows the cycle structure and the number of necklaces fixed by each operation.

By the CFB theorem, the number of different necklaces equals

1

12

�

36 C 3 � 34 C 4 � 33 C 2 � 32 C 2 � 31
�

D 92:

That is, out of the 36 D 729 initial necklaces (i.e., those with the beads numbered and the

necklace unmovable) there are only 92 truly distinct possibilities.

For the seven-bead necklace, arrange it as shown:

1

3

2

45

6

7
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motion � product of disjoint cycles
ˇ

ˇfixD7
.�/

ˇ

ˇ

I .1/.2/.3/.4/.5/.6/.7/ 37

R1 .1 2 3 4 5 6 7/ 31

R2 .1 3 5 7 2 4 6/ 31

R3 .1 4 7 3 6 2 5/ 31

R4 .1 5 2 6 3 7 4/ 31

R5 .1 6 4 2 7 5 3/ 31

R6 .1 7 6 5 4 3 2/ 31

F1 .1/.2 7/.3 6/.4 5/ 34

F2 .1 3/.2/.4 7/.5 6/ 34

F3 .1 5/.2 4/.3/.6 7/ 34

F4 .1 7/.2 6/.3 5/.4/ 34

F5 .1 2/.3 7/.4 6/.5/ 34

F6 .1 4/.2 3/.5 7/.6/ 34

F7 .1 6/.2 5/.3 4/.7/ 34

Table 5.6. Cycle structure for the seven-bead necklace.

Table 5.6 lists the relevant information, and the CFB theorem tells us that there are

1

14

�

37 C 7 � 34 C 6 � 31
�

D 198

different seven-bead necklaces using three colors of beads.

Question 203 What is the answer to each necklace-counting question if k colors are avail-

able instead of three?

The n-bead necklace
After working out the six-bead and seven-bead cases, and perhaps the nine-bead case on

your own, you will begin to get some intuition about what is required for the n-bead neck-

lace. It is clear that the number-theoretic properties of n play a central role. See Exercises

15 and 16.

Example 3: a non-geometric example

Consider the following operations on a binary number. The first is the SHIFT operation

which shifts each digit one place to the left, with wrap-around at the end. For example,

SHIFT.00010/ D 00100 and SHIFT.01011/ D 10110. The other is the FLIP operation

which changes each 0 to a 1 and each 1 to a 0. For example, FLIP.00010/ D 11101 and

FLIP.01011/ D 10100.

How many different 5-digit binary numbers are there if two such numbers are consid-

ered equivalent if one can be obtained from the other by any combination of SHIFT and

FLIP operations?
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For example, the following numbers are all equivalent:

01001 �����!
SHIFT

10010 �����!
SHIFT

00101 ���!
FLIP

11010 �����!
SHIFT

10101:

In preparation for constructing the symmetry group, let’s represent a 5-digit binary number

as d1d2d3d4d5. We need the identity operation, operations that SHIFT either one, two,

three, or four times, and the flip operation. Here is the relevant information. (We use d 0
i to

indicate that digit di ’s value has “flipped.”)

motion � Result product of disjoint cycles

I d1d2d3d4d5 .d1/.d2/.d3/.d4/.d5/

S1 d2d3d4d5d1 .d1 d5 d4 d3 d2/

S2 d3d4d5d1d2 .d1 d4 d2 d5 d3/

S3 d4d5d1d2d3 .d1 d3 d5 d2 d4/

S4 d5d1d2d3d4 .d1 d2 d3 d4 d5/

F d 0
1d 0

2d 0
3d 0

4d 0
5 ? ? ?

But what about the FLIP operation, F ? We cannot compute its cycle structure as we

did for the SHIFT operations because FLIP changes each digit’s value and not its loca-

tion. This means that, unlike all previous examples, we are not dealing with a permu-

tation group. In addition, the symmetry group cannot consist just of the operations in

H WD fI; S1; S2; S3; S4; F g because this set is not closed under composition and thus

is not a group. For example, if we apply S2 first and then F , we get

FS2.d1d2d3d4d5/ D F
�

S2.d1d2d3d4d5/
�

D F.d3d4d5d1d2/

D d 0
3d 0

4d 0
5d 0

1d 0
2:

(The notation FS2 is an abbreviation for F ı S2, the composition of F with S2.) There

is no way to get from d1d2d3d4d5 to d 0
3d 0

4d 0
5d 0

1d 0
2 with a single operation in the set H

defined just above. Thus, H is not closed so it is not a group.

We can make it a group by adding four more operations—those of the form FSi for

i D 1; 2; 3; 4. One can then check that

G WD fI; S1; S2; S3; S4; F; FS1; FS2; FS3; FS4g

is indeed a group. It is not necessary to construct the 10 � 10 group table as an intuitive

check should suffice.

Question 204 What group operation is the net result of applying S3 followed by S4? F

followed by S3? FS2 followed by S4? S4 followed by FS2? Is this group commutative?
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Now in order to apply the CFB theorem we need the sizes of the fixed point sets:

motion �
ˇ

ˇfixG .�/
ˇ

ˇ motion �
ˇ

ˇfixG .�/
ˇ

ˇ

I 25 F 0

S1 21 FS1 0

S2 21 FS2 0

S3 21 FS3 0

S4 21 FS4 0

The cycle structure that we computed in the previous table helps compute the sizes of the

fixed point sets for the first five operations. None of the remaining five operations leaves

any 5-digit binary number fixed.

Question 205 Explain why.

Finally, using the CFB theorem, there are

1

10

�

25 C 21 C 21 C 21 C 21 C 0C 0C 0C 0C 0
�

D 4

different 5-digit binary numbers under this notion of equivalence.

Question 206 Give one representative from each of the four equivalence classes.

Example 4: coloring the 3 � 3 grid in a specific way

How many different black-white colorings of the 3� 3 grid have exactly five black squares

and four white squares?

In our original grid-coloring question in Section 5.1, the set C A was the set of 29 D 512

possible 2-colorings. In this case, the set C A is the set of all possible 2-colorings that use

five black and four white squares, of which there are
�

9
5

�

. Therefore the symmetry group

of the grid stays the same but the set C A changes. This requires re-computing the size of

each fixed point set.

The identity operation I leaves all
�
9
5

�

colorings fixed. To determine how many color-

ings that the R1 operation leaves fixed, examine its cycle structure:

R1 D .1 3 9 7/.2 6 8 4/.5/:

Since each coloring contains exactly five black and four white squares, this operation fixes

only two colorings. This is because the squares in the cycle .1 3 9 7/ must be all black or all

white. Once those squares are colored, the squares in .2 6 8 4/ must receive the opposite

color. This produces four black and four white squares, so the square numbered 5 must

receive black. For the same reason, the R3 operation also fixes only two colorings.

Though the R2 D .1 9/.2 8/.3 7/.4 6/.5/ operation involves more cycles, the approach

to counting the colorings it fixes remains the same. There are six in total.

Question 207 Provide the details (consider cases) that show that the R2 operation fixes

six colorings.
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The following table summarizes the results:

motion � product of disjoint cycles
ˇ

ˇfixC4
.�/

ˇ

ˇ

I .1/.2/.3/.4/.5/.6/.7/.8/.9/
�

9
5

�

R1 .1 3 9 7/.2 6 8 4/.5/ 2

R2 .1 9/.2 8/.3 7/.4 6/.5/ 6

R3 .1 7 9 3/.2 4 8 6/.5/ 2

By the CFB theorem, the number of inequivalent colorings equals

1

4

  

9

5

!

C 2C 6C 2

!

D 34: (5.2)

It is worth noting that once we make the type of coloring more specific (here, five black

and four white squares, instead of any number of each type) the size of each fixed point

set might be less straightforward to determine. Pólya’s enumeration theorem, the subject

of Section 5.6, uses generating functions to rectify this difficulty.

Summary

Applying the Cauchy-Frobenius-Burnside theorem amounts to understanding the symme-

try group of the object in question and then analyzing its cycle structure. In many problems,

we can make use of known symmetry groups such as the dihedral group Dn or the cyclic

group Cn. Other problems might require starting from scratch.

Exercises

1. Answer the triangular prism question but in the case that the base and top of the prism

are a (non-equilateral) isosceles triangle.

2. Consider instead coloring the six corners of the triangular prism in the first exam-

ple. Determine how the symmetry group operates on the corners, and then count the

number of inequivalent colorings such that each corner receives one of k colors.

3. How many different seven-bead necklaces are possible, where each bead can be either

red or blue? How many have exactly three red and four blue beads?

4. In how many different ways can we color the four corners of the regular tetrahedron

if each corner can receive one of k colors? (Hint: The symmetry group of the regular

tetrahedron has size 12, and each face is an equilateral triangle.)

The regular tetrahedron

5. In how many different ways can we color the six faces of a cube if each face can

receive one of three different colors? Of those colorings, how many have at least one

face of each color? (Hint: The symmetry group of the cube has size 24.)
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6. Repeat the previous exercise but for coloring the eight corners of the cube.

7. How many different ways are there to construct a design of the following shape using

red, green, and white poker chips? The design is put on a table that can be viewed

from any angle. (Chip locations are numbered for convenience.)

1

7 8 9 10

4 5 6

2 3

8. Now repeat the previous question but instead assume the design is a styrofoam-ball

structure that is free to rotate in space.

9. How many different structures of the following design are possible, where each of the

styrofoam balls can be one of four colors and each of the sticks can be one of three

colors?

1

23

4

56

10. How many different black-white colorings of the 3 � 3 grid have exactly three black

squares and six white squares? How many have exactly two black squares and seven

white squares?

11. Repeat the problem of counting the black-white colorings of the 3 � 3 grid, but do so

for the 4 � 4 and the 5 � 5 grids.

12. Generalize the previous problem to count the k-colorings of the n � n grid.

13. Write down the four orbits in Example 3 of this section. That is, show how the set of

5-digit binary numbers is partitioned into equivalence classes.

14. How many different 6-digit binary numbers are there if two such numbers are consid-

ered equivalent if one can be obtained from the other by any combination of SHIFT

and FLIP operations? (Hint: There is an issue here not present in the example shown

in the text.)

15. Consider a p-bead necklace, where p is a prime number greater than 2. Prove that the

cycle structure of each planar rotation (other than the zero-degree rotation, or identity)

contains exactly one cycle.

16. How many different n-bead necklaces are possible, where each bead can be one of k

colors? Make your formula as useful as possible. (Hint: You will need to use number-

theoretic properties of the integer n.)
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5.5 Proving the CFB theorem

In this short section we prove the Cauchy-Frobenius-Burnside theorem. In addition to or-

bits and fixed point sets, we use the concept of stabilizer.

Definition 5.5.1 (stabilizer) Let A and C be finite sets, and let G be a group of permuta-

tions of A. For any f 2 C A, the stabilizer of f under G is the set

stabG.f / WD
˚

� 2 G W �.f / D f
	

:

Thus, the stabilizer of a function is the set of all group operations that leave that function

unchanged.

We break the proof of the CFB theorem into three steps of which the first is the most

technical.

Step 1: linking orbits and stabilizers

To understand the link between orbits and stabilizers, we again use the square-coloring

problem of Section 5.1 to illustrate. Table 5.7 lists the orbit and stabilizer for each of the

16 colorings. (Refer back to Figure 5.1.) For each coloring, the size of its orbit times the

size of its stabilizer equals 8, the size of the symmetry group.

Take any coloring, say f2. Its orbit is ff2; f3; f4; f5g. For each coloring in this orbit,

identify a group operation that takes f2 to that coloring. Rewrite the orbit thus:

orbD4
.f2/ D

˚

I.f2/
„ƒ‚…

Df2

; R1.f2/
„ ƒ‚ …

Df3

; F2.f2/
„ ƒ‚ …

Df4

; F2;3.f2/
„ ƒ‚ …

Df5

	

:

Other rewritings may be possible. For instance, we could have rewritten f4 as R2.f2/.

Since the size of the group equals the product of the sizes of f2’s orbit and its stabilizer,

the product principle suggests that we should be able to construct a meaningful one-to-one

correspondence between the eight group elements and the pairs .O; S/ where O is from

the orbit of f2 and S from the stabilizer of f2.

Take any group element, say R2. To which pair .O; S/ should we map R2? A natural

choice for the element O of the orbit is R2.f2/, which equals f4. Now, the key idea in

the later proof comes in the choice of the stabilizer element S . We know, from the way we

write the orbit above, that f4 D F2.f2/, so that the rotation motion R2 has the same action

on the coloring f2 as does the flip motion F2. To build an element in the stabilizer, then,

just choose

S WD F �1
2 ıR2:

This is guaranteed to be in the stabilizer because the F2 and R2 operations have the same

effect on f2:

�

F �1
2 ıR2

�

.f2/ D F �1
2

�

R2.f2/
�

D F �1
2

�

F2.f2/
�

D f2:

Therefore R2 should map to
�

f4; F �1
2 ıR2

�

.

Question 208 Using the group table for the symmetries of the square (Table 5.3, page

195), what group element equals F �1
2 ıR2?

To tackle the general case, suppose the orbit of the function f has size n, say

orbG.f / D
˚

�1.f /; �2.f /; : : : ; �n.f /
	

: (5.3)
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f orbD4
.f / stabD4

.f /
ˇ
ˇorbD4

.f /
ˇ
ˇ �
ˇ
ˇstabD4

.f /
ˇ
ˇ

f1 ff1g D4 1 � 8 D 8

f2 ff2; f3; f4; f5g fI; F1g 4 � 2 D 8

f3 ff2; f3; f4; f5g fI; F2g 4 � 2 D 8

f4 ff2; f3; f4; f5g fI; F1g 4 � 2 D 8

f5 ff2; f3; f4; f5g fI; F2g 4 � 2 D 8

f6 ff6; f7; f8; f9g fI; F1;2g 4 � 2 D 8

f7 ff6; f7; f8; f9g fI; F2;3g 4 � 2 D 8

f8 ff6; f7; f8; f9g fI; F1;2g 4 � 2 D 8

f9 ff6; f7; f8; f9g fI; F2;3g 4 � 2 D 8

f10 ff10; f11g fI; R2; F1; F2g 2 � 4 D 8

f11 ff10; f11g fI; R2; F1; F2g 2 � 4 D 8

f12 ff12; f13; f14; f15g fI; F1g 4 � 2 D 8

f13 ff12; f13; f14; f15g fI; F2g 4 � 2 D 8

f14 ff12; f13; f14; f15g fI; F1g 4 � 2 D 8

f15 ff12; f13; f14; f15g fI; F2g 4 � 2 D 8

f16 ff16g D4 1 � 8 D 8

Table 5.7. Orbits and stabilizers in the square example.

Here �1; �2; : : : ; �n are distinct elements of G. We map � 2 G to the pair

�

�.f /; ��1
j ı �

�

where �j is that group element listed in the orbit (5.3) that produces the same action on f

as does � . The second element of the pair indeed belongs to the stabilizer because

�

��1
j ı �

�

.f / D ��1
j

�

�.f /
�

D ��1
j

�

�j .f /
�

D f:

Therefore this function is well-defined. To complete the proof, we show that it is bijective.

Lemma 5.5.2 Let A and C be finite sets, and let G be a group of permutations of A. Then

for any f 2 C A, we have

ˇ
ˇorbG.f /

ˇ
ˇ �
ˇ
ˇstabG.f /

ˇ
ˇ D jGj:

Proof: Let A and C be finite sets, and let G be a group of permutations of A. Let f 2 C A

and suppose its orbit has n distinct elements as listed in (5.3) above. Define the function

F W G �! orbG.f / � stabG.f / by

F.�/ D
�

�.f /; ��1
j ı �

�

where �j satisfies �.f / D �j .f /,

which we already showed is well-defined. We now show that F is bijective.
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F is one-to-one: Let �; � 2 G and assume that F.�/ D F.�/. This means that for

some j and k,
�

�.f /; ��1
j ı �

�

„ ƒ‚ …

DF.�/

D
�

�.f /; ��1
k ı �

�

„ ƒ‚ …

DF.�/

where �.f / D �j .f / and �.f / D �k.f / for some j and k. But �.f / D �.f / since

the first components of the pairs are equal, so it follows that �j D �k . Since the second

components of the pairs are equal, we use �j D �k and left-cancellation to show

��1
j ı � D ��1

k ı � H) ��1
j ı � D ��1

j ı � H) � D �:

Therefore F is one-to-one.

F is onto: Let
�

�j .f /; �
�

be in the codomain. We must find some � 2 G that maps to

this pair. Define � WD �j ı � . Then, since � belongs to the stabilizer,

�.f / D
�

�j ı �
�

.f / D �j

�

�.f /
�

D �j .f /;

and so the first element of F.�/ equals �j .f /. The second element is

��1
j ı � D ��1

j ı .�j ı �/ D �;

so indeed F.�/ D
�

�j .f /; �
�

and therefore F is onto.

Question 209 Suppose that jGj is prime. What can you say about the size of any orbit or

stabilizer?

Step 2: a formula for the number of orbits

Next we derive a formula for the number of orbits.

Lemma 5.5.3 Let A and C be finite sets, let G be a group of permutations of A, and let O

be the set of orbits of C A. Then we have

jOj D 1

jGj
X

f 2CA

ˇ
ˇstabG.f /

ˇ
ˇ:

Proof: Let A and C be finite sets, and let G be a group of permutations of A. By Lemma

5.5.2, we know that for any f 2 C A,

1
ˇ
ˇorbG.f /

ˇ
ˇ
D 1

jGj �
ˇ
ˇstabG.f /

ˇ
ˇ:

Sum both sides over all functions f 2 C A to get

X

f 2CA

1
ˇ
ˇorbG.f /

ˇ
ˇ
D 1

jGj
X

f 2CA

ˇ
ˇstabG.f /

ˇ
ˇ:

The sum on the left equals jOj, the total number of orbits.

Question 210 Justify the last line of the proof.
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Step 3: adjusting the formula to get the CFB theorem

The following lemma shows how to replace the sum in Lemma 5.5.3 by one whose number

of terms equals the size of the group G and not the size of the colorings (i.e., functions) C A.

This adjustment prevents the workload from increasing as the number of colors increases.

Lemma 5.5.4 Let A and C be finite sets, and let G be a group of permutations of A. Then

we have
X

f 2CA

ˇ
ˇstabG.f /

ˇ
ˇ D

X

�2G

ˇ
ˇfixG.�/

ˇ
ˇ:

Combinatorial proof: How many pairs .�; f / 2 G �C A are there, where �.f / D f ?

Answer 1: Condition on the function f . By Definition 5.5.1, there are
ˇ
ˇstabG.f /

ˇ
ˇ

elements of G that satisfy �.f / D f . Summing over all functions in C A gives a total of
P

f 2CA

ˇ
ˇstabG.f /

ˇ
ˇ possible pairs.

Answer 2: Condition instead on the group element � . By Definition 5.3.3, there are
ˇ
ˇfixG.�/

ˇ
ˇ elements of C A that satisfy �.f / D f . Summing over all elements in G gives

a total of
P

�2G

ˇ
ˇfixG.�/

ˇ
ˇ possible pairs.

The CFB theorem (Theorem 5.3.5, page 203) now follows immediately by combining

the results of Lemmas 5.5.3 and 5.5.4.

5.6 The cycle index and Pólya’s theorem

The Cauchy-Frobenius-Burnside theorem provides for easy computation in problems where

we seek the number of inequivalent “colorings” with no further restrictions. But if we add

a restriction, like having exactly five black and four white squares in the grid example,

our set of colorings changes and we may have to re-compute the sizes of the fixed point

sets. Pólya’s enumeration theorem uses a generating function to inventory the colorings

according to specific properties. It is flexible enough to answer many counting questions

at once.

We state Pólya’s enumeration theorem (Theorem 5.6.2) without proof and instead focus

on its applications. Good references for the reader interested in the proof are the books by

Erickson (1996), Bogart (1990), or Roberts & Tesman (2004).

The cycle index of a group

In preparation for understanding Pólya’s theorem, we first introduce the cycle index of

a group. The cycle index is a multinomial that encodes the cycle structure of the group

elements.

Here is how it works for the square-coloring example of Section 5.1. The flip motion

F1 D .1/.2 4/.3/ has two 1-cycles and one 2-cycle, so we use the multinomial term z2
1z2

to represent this. The identity motion I has four 1-cycles, so we use the term z4
1 . The R1

motion has one 4-cycle, so its term is z4. The complete list of terms appears in the table

below.
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motion � product of disjoint cycles term in cycle index

I .1/.2/.3/.4/ z4
1

R1 .1 2 3 4/ z4

R2 .1 3/.2 4/ z2
2

R3 .1 4 3 2/ z4

F2;3 .1 4/.2 3/ z2
2

F1;2 .1 2/.3 4/ z2
2

F1 .1/.2 4/.3/ z2
1z2

F2 .1 3/.2/.4/ z2
1z2

The cycle index Z is then defined to be the sum of these terms, divided by the size of the

group:

Z.z1; z2; z3; z4/ WD 1

8

�

z4
1 C z4 C z2

2 C z4 C z2
2 C z2

2 C z2
1z2 C z2

1z2

�

D 1

8

�

z4
1 C 2z2

1z2 C 3z2
2 C 2z4

�

:

(5.4)

Question 211 What is the cycle index for the group of symmetries for the grid problem?

In general, suppose that a given group element has c1 cycles of length 1, c2 cycles of

length 2, and so on. In the cycle index, this group element will contribute the multinomial

term

z
c1

1 z
c2

2 � � � zcm
m

where m is the length of the largest cycle appearing. The cycle index averages the above

multinomial terms. Notice its similarity in appearance to the formula of the CFB theorem

(Theorem 5.3.5).

Definition 5.6.1 (cycle index) Let G be a finite group, and suppose that each element is

written as a product of disjoint cycles. If the overall length of the longest such cycle is m,

then we define the cycle index of G as the multinomial

Z.z1; z2; : : : ; zm/ WD 1

jGj
X

�2G

z
c1.�/
1 z

c2.�/
2 � � � zcm.�/

m

where cj .�/ denotes the number of j -cycles in � .

Notice that the cycle index depends only on the group—the definition makes no mention

of a group acting on a set.

The cycle index for certain groups

Because the cycle index depends only on the symmetry group and not on the functions or

colorings themselves, it is possible to compute the cycle index for the standard and useful

groups Sn, Dn, and Cn. See the Exercises.
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The pattern inventory

Next, we tell the cycle index to keep an inventory of the number of inequivalent colorings

with certain properties. In the square-coloring example, each 1-cycle contributes one black

corner or one white corner to the coloring. In the spirit of generating functions, this sug-

gests replacing each occurrence of z1 by the symbolic series b C w to indicate the “black

or white” choice.

Likewise, each 2-cycle contributes either two black corners or two white corners to

the coloring. Replace each z2 by b2 C w2 to indicate this choice. Overall, making the

replacements

z1  � b C w

z2  � b2 C w2

z3  � b3 C w3

z4  � b4 C w4

in the cycle index Z shown in equation (5.4) creates an inventory of inequivalent colorings

organized by the number of black and white corners used in each:

Z.b C w; b2C w2; b3 C w3; b4C w4/

D 1

8

�

.b C w/4 C 2.b C w/2.b2 Cw2/C 3.b2 C w2/2 C 2.b4 C w4/
�

D � � �
D b4 C b3w C 2b2w2 C bw3 C w4:

The “� � � ” hides algebraic simplification that is perhaps best left to a computer algebra

system like Maple or Mathematica.

The end result is a generating function where the coefficient of bi wj equals the number

of inequivalent colorings with i black and j white corners. The number of inequivalent

colorings with two black and two white corners is two, because of the 2b2w2 term. The

rest of the terms have coefficient equal to 1, so there is only one inequivalent coloring

with each other combination of black and white corners shown. This generating function

is known as the pattern inventory.

We can do the same for the grid-coloring example of Section 5.1. Table 5.2 on page

193 contains the relevant information for computing the cycle index, which is

Z.z1; z2; z3; z4/ D 1

4

�

z9
1 C 2z1z2

4 C z1z4
2

�

:

The pattern inventory is then

Z.b C w; b2C w2; b3 Cw3; b4C w4/

D 1

4

�

.b C w/9 C 2.b C w/.b4 C w4/2 C .b C w/.b2 C w2/4
�

D � � �
D b9 C 3b8w C 10b7w2C 22b6w3 C 34b5w4

C 34b4w5C 22b3w6 C 10b2w7 C 3bw8Cw9:
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220 5. Counting Under Equivalence

In particular, there are 34 inequivalent colorings with five black squares and four white

squares because of the coefficient on b5w4. Of course, this agrees with the answer we

computed at the end of Section 5.4.

Question 212 Explain why the coefficients in the pattern inventory are symmetric. That is,

why is the coefficient of bj w9�j always equal to that of b9�j wj ?

It is worth seeing, however, the miraculous way the pattern inventory generating func-

tion carries out those computations for us. The first term in parentheses in the pattern

inventory is .b C w/9, and so the coefficient of b5w4 is
�

9
5

�

by the binomial theorem. The

second term is

2.b C w/.b4 C w4/2 D 2.b C w/.b8 C 2b4w4C w8/

so 4 is the coefficient of b5w4. The third term is

.b C w/.b2 C w2/4 D .b C w/.b8 C 4b6w2 C 6b4w4 C 4b2w6C w8/

so 6 is the coefficient of b5w4. That means the coefficient we seek is

1

4

  

9

5

!

C 4C 6

!

D 34:

Compare this with our previous work in equation (5.2) on page 212.

Pólya’s enumeration theorem

What we call Pólya’s enumeration theorem is not the most general version of his result.

It is possible to modify our version so that “weights” may be assigned to the colors. This

results in additional flexibility. See the example at the close of this section for a preview.

Theorem 5.6.2 (Pólya) Let A and C be finite sets, let G be a group of permutations of A,

and suppose that the cycle index of G is Z.z1; z2; : : : ; zm/. If C D fc1; c2; : : : ; ctg, then

the pattern inventory can be obtained from the cycle index by making the substitution

zk  � ck
1 C ck

2 C � � � C ck
t for all k 2 Œm�

in the cycle index.

The pattern inventory is the generating function in which the coefficient of c
i1
1 c

i2
2 � � � c

it

t

equals the number of inequivalent colorings in which color c1 appears i1 times, color c2

appears i2 times, and so forth.

Example: coloring the faces of a triangular prism

In how many different ways can we color the five faces of the triangular prism (see Example

1 of Section 5.4) such that each face receives either black, white, or red and exactly one

red face appears?

Let’s borrow the table we used in Section 5.4 to find the cycle index.
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motion � product of disjoint cycles term in cycle index

I .B/.T /.S1/.S2/.S3/ z5
1

R1 .B/.T /.S1 S2 S3/ z2
1z3

R2 .B/.T /.S1 S3 S2/ z2
1z3

F1 .B T /.S1/.S2 S3/ z1z2
2

F2 .B T /.S1 S3/.S2/ z1z2
2

F3 .B T /.S1 S2/.S3/ z1z2
2

The cycle index is then

Z.z1; z2; z3/ D 1

6

�

z5
1 C 2z2

1z3 C 3z1z2
2

�

:

To get the pattern inventory, replace each zk by bk C wk C rk:

1

6

�

.b C w C r/5 C 2.b C w C r/2.b3 C w3C r3/

C 3.b C w C r/.b2 Cw2 C r2/2
�

:

Now expand it:

b5 C w5 C r5C 2b4w C 3b3w2C 3b2w3C 2bw4C 4b3wr C 6b2w2r

C 6b2wr2C 4bw3r C 6bw2r2 C 4bwr3C 2b4r C 3b3r2

C 3b2r3 C 2br4C 2w4r C 3w3r2 C 3w2r3 C 2wr4:

We seek the sum of the coefficients on the terms that look like biwj r . Those terms are

4b3wr C 6b2w2r C 4bw3r C 2b4r C 2w4r;

and so the answer is 4C 6C 4C 2C 2 D 18.

Question 213 How many colorings are there in which at most one red face appears?

Question 214 The pattern inventory tells us that there are four colorings that have one

black, three white, and one red face. Draw these colorings.

The flexibility of Pólya’s theorem

To close this chapter, we present an example that illustrates how to use the cycle index

to answer specific counting questions. As we mentioned before stating Pólya’s theorem,

these methods can be made rigorous by assigning a “weight” to each color. We will avoid

formality and let the examples suffice.

Let’s count the different ways to construct the following structure using seven indistin-

guishable sticks and six styrofoam balls of various colors. (The locations of the balls are

numbered in preparation for finding the symmetry group.)

1 2 3

4 5 6
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How many different structures are possible under each of the following conditions?

(a) Each ball is either red, blue, or green.

(b) There are two of each color used.

(c) No reds are used.

(d) At least two greens are used.

(e) At least one blue and one green are used.

Our first job is to determine the symmetry group G of this figure. It has four elements:

identity (I ), rotate 180 degrees (R180), flip along the horizontal axis of symmetry (FH ),

and flip along the vertical axis of symmetry (FV ). The information for the cycle index is:

motion � product of disjoint cycles term in cycle index

I .1/.2/.3/.4/.5/.6/ z6
1

R180 .1 6/.2 5/.3 4/ z3
2

FH .1 4/.2 5/.3 6/ z3
2

FV .1 3/.2/.4 6/.5/ z2
1 z2

2

The cycle index is

Z.z1; z2/ D 1

4

�

z6
1 C 2z3

2 C z2
1z2

2

�

:

If we replace z1 by r C b C g and z2 by r2 C b2 C g2, we get the pattern inventory:

Z.r C b C g; r2C b2 C g2/

D 1

4

�

.r C b C g/6 C 2.r2 C b2 C g2/3 C .r C b C g/2.r2 C b2 C g2/2
�

:

All of the above questions can be answered by making appropriate substitutions in either

the cycle index or the pattern inventory. Here is how.

(a) Here, we’d normally apply the CFB theorem but notice that the principle that we used

to count the size of each fixed point set (namely, each cycle must be monochromatic)

implies that we can get the answer by letting z1 D 3 and z2 D 3 in the cycle index:

Z.3; 3/ D 1

4

�

36 C 2 � 33 C 32 � 32
�

D 216:

Equivalently we could let r D 1, b D 1, and g D 1 in the pattern inventory.

(b) The answer is the coefficient of r2b2g2 in the pattern inventory. Using software such

as Maple, the answer is 27.

(c) We could add the coefficients of all the terms with no r in the pattern inventory. There

is a faster way to do this: evaluate the pattern inventory at r D 0, b D 1, and g D 1.

The answer is 24.
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5.6. The cycle index and Pólya’s theorem 223

(d) We can get an inventory of colorings that use any number of greens from 0 to 6 by

evaluating the pattern inventory at r D 1 and b D 1, and leaving g alone. Using

Maple, this results in

24C 52g C 71g2 C 44g3 C 20g4 C 4g5 C g6:

Therefore, there are 71C 44C 20C 4C 1D 140 structures using at least two greens.

Equivalently, we could subtract the number of structures using at most one green from

the total: 216� 24� 52 D 140.

(e) We first count the complement by determining the number of structures having either

no blues or no greens. The answer is 24C 24 � 1 D 47 because there are 24 with no

blues (same answer as part (c)), 24 with no greens, and 1 with no blues and no greens.

Therefore, the number with at least one blue and at least one green is 216�47 D 169.

Summary

The cycle index of a permutation group keeps track of the cycle structure of each permuta-

tion. The pattern inventory, which is obtained from the cycle index, is a generating function

that allows for specific counting questions to be answered at a glance. In our examples in-

volving coloring, the pattern inventory organizes all possible colorings by the number of

times each color is used, and is flexible enough to answer very specific counting questions.

Exercises

1. Find the cycle index for the symmetric groups S3 and S4.

2. Find the cycle index for the cyclic groups C4 and C5.

3. Find the cycle index for the cyclic group Cp , where p is a prime.

4. Find the cycle index for the dihedral group Dn as it acts on the corners of the regular

n-gon. You’ll need to consider two cases depending on the parity of n.

5. If H is a subgroup of G, then how is the cycle index of H related to the cycle index

of G?

6. How many different seven-bead necklaces are possible, assuming each bead is one of

four different colors and each necklace contains exactly one bead of one color and

exactly two beads of each of the three remaining colors?

7. How many different 20-bead necklaces are possible, assuming each bead is one of

three different colors? How many of those necklaces have at least three beads of each

color?

8. How many different colorings of the six faces of a cube are possible, assuming that

two faces must be white, two must be black, and two must be red? (Hint: Use your

work in Exercise 5 of Section 5.4.)

9. Find the answer to Exercise 7 of Section 5.4 assuming that you only have one red chip

available.

10. Find the answer to Exercise 8 of Section 5.4 assuming that you only have one red ball

available.
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224 5. Counting Under Equivalence

11. A 4-inch by 1-inch by 1-inch block has four squares on each of its rectangular faces

as shown below. Assume that the squares opposite squares 1–4 are labeled 9–12 and

the squares opposite those labeled 5–8 are labeled 13–16.

1

5

2

6

4

8

3

7

Each numbered square can be colored red, blue, or green.

(a) Find the cycle index, assuming the block is free to move in space.

(b) How many different colorings of the block are there?

(c) How many different colorings have at least one green square?

(d) How many different colorings have exactly five green squares?

12. Let A and C be finite sets, let G be a group of permutations of A, and let O be the

set of orbits of C A. Use the CFB theorem to prove that jOj D ZG.c; c; : : : ; c/ where

ZG is the cycle index of G and c D jC j (i.e., c is the number of “colors”).

Travel Notes

Pólya’s enumeration theorem is sometimes called the Pólya-Redfield theorem. A number

of authors have noted that the paper of Redfield (1927) contained similar ideas of which

Pólya was unaware when he did his work. At any rate, no one argues that it was anyone

other than Pólya who demonstrated the wide-ranging utility of the theory that now bears

his name.

The original paper is Pólya (1937) and is written in German. The book Pólya & Read

(1987) contains an English translation of Pólya’s 1937 paper in German as well as addi-

tional material.
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C H A P T E R 6

Combinatorics on Graphs

In this chapter we undertake a small survey of combinatorial problems that arise in graph

theory. Combinatorics and graph theory are closely intertwined and so graph theory

abounds with enumeration, existence, construction, and optimization problems. We con-

centrate on two enumeration problems (labeled trees and binary search trees in Section

6.2 and proper colorings in Section 6.3) and a certain existence question (Ramsey the-

ory in Section 6.4). Though we don’t treat them here, much work is being done today on

optimization problems on graphs. This is because graphs serve as excellent models for

computers as well as communications and transportation networks.

6.1 Basic graph theory

In this opening section we cover the basic vocabulary and concepts of graph theory that are

necessary for the combinatorial problems we will encounter in later sections. The reader

familiar with basic graph theory can safely skip most of this section but should read some

of the combinatorial results and also try the Exercises.

Graph vocabulary

A graph can be thought of as a set-theoretic object or as a geometric object and each is

profitable in different situations. A graph at its heart, though, is set-theoretic.

Definition 6.1.1 A graph is a 2-list .V; E/ where V is a nonempty, finite set and E is a set

of 2-subsets of V . The set V is the vertex set and the set E is the edge set. The elements of

V are called vertices and the elements of E are called edges.

We usually refer to graphs with capital letters G, H , etc. Writing G D .V; E/ means that

G is a graph with vertex set V and edge set E . The edge set E is allowed to be empty.

Sometimes we write V.G/ and E.G/ instead of just V and E to emphasize the name of

the graph G.

For example,

G1 D
�

f1; 2; 3; 4; 5; 6g
„ ƒ‚ …

vertex set V

;
˚

f1; 2g; f1; 4g; f2; 4g; f2; 5g; f2; 6g; f4; 5g; f5; 6g
	

„ ƒ‚ …

edge set E

�

is a graph. The picture shown at the left in Figure 6.1 gives a visual representation of this

graph. Each of the six vertices is represented by a circle with its label next to it, and each

225
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226 6. Combinatorics on Graphs

edge is represented by a line connecting the two vertices in the edge.

G1

1

2 3

4

56

1

2

3

4

5

6

7

8

9

10

G2

Figure 6.1. Two graphs G1 and G2 .

Question 215 Write the vertex and edge sets of the graph G2 shown at the right in Figure

6.1.

A vertex and an edge are incident provided that the vertex belongs to the edge (in the

set-theoretic interpretation) or provided that the vertex “touches” the edge (in the geometric

interpretation). The degree of a vertex is the number of edges that are incident to that

vertex. The notation dG.v/ indicates the degree of the vertex v in the graph G. If the graph

G is understood, we might simply write d.v/.

Two vertices are adjacent provided that they are both contained in a single edge (set-

theoretic) or provided that there is an edge connecting them (geometric). The notation

u � v indicates that vertices u and v are adjacent. For any edge fu; vg, the vertices u and

v are the endpoints of the edge.

Question 216 Is 5 � 6 in G1? Is 5 � 6 in G2?

If we consider is-adjacent-to (or�) as a relation of the set of vertices of a graph, we see

that � is irreflexive (no vertex is adjacent to itself) and symmetric (if v � w then w � v).

Thus a graph is from this point of view a certain kind of relation. See the discussion at the

beginning of Section 1.3.

For the graph G1 of Figure 6.1, vertex 2 is incident to the edge f2; 6g while it is not

incident to f4; 5g. Similarly 2 � 6 while vertices 1 and 5 are not adjacent (1 6� 5). That

same graph has

d.1/ D 2; d.2/ D 4; d.3/ D 0; d.4/ D 3; d.5/ D 3; d.6/ D 2:

The vertex 3, which has degree 0, is called an isolated vertex.

Question 217 Is it possible to draw a graph with vertex set Œ5� and having d.1/ D d.2/ D
d.3/ D d.5/ D 3 and d.4/ D 2? Support your answer in either case.

A graph is k-regular provided d.v/ D k for every vertex v. The graph G2 in Figure

6.1 is 3-regular while the graph G1 is not k-regular for any value of k. A graph that is

k-regular for some value of k is called a regular graph.

Graph parameters

For any graph G D .V; E/ we define the following:

n.G/ D the number of vertices of G

e.G/ D the number of edges of G

ı.G/ D the minimum degree in G

�.G/ D the maximum degree in G.
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6.1. Basic graph theory 227

That is, n.G/ D jV.G/j and e.G/ D jE.G/j. The letter n is used almost universally to

denote the number of vertices of a graph. The letter m is sometimes used to denote the

number of edges.

In the graphs of Figure 6.1 we have

n.G1/ D 6 n.G2/ D 10

e.G1/ D 7 e.G2/ D 15

ı.G1/ D 0 ı.G2/ D 3

�.G1/ D 4 �.G2/ D 3

In general, G is k-regular if and only if ı.G/ D �.G/ D k.

Question 218 Draw an example of a seven-vertex graph with ı D 3 and � D 4.

Two counting questions

The handshaking lemma

Our first combinatorial property of graphs concerns what happens when we sum all of

the degrees in the graph. Doing so counts each edge twice: a generic edge fv; wg counts

1 toward the value of d.v/ and 1 toward the value of d.w/. Therefore, if we add all of

the degrees, then we wind up with twice the number of edges. This proves the following

theorem known as the “handshaking lemma.”

Lemma 6.1.2 (handshaking) If G D .V; E/ is a graph, then
X

v2V .G/

d.v/ D 2e.G/.

The graph G1 of Figure 6.1 has seven edges, so the sum of the degrees should be 14:

X

v2V .G1/

d.v/ D d.1/ C d.2/C d.3/C d.4/C d.5/ C d.6/

D 2C 4C 0C 3C 3C 2 D 14:

Question 219 If G is a 4-regular graph on n vertices, then how many edges does G have?

We next use the handshaking lemma to prove a result about the parity of the degrees in

a graph.

Theorem 6.1.3 If G is a graph, then there are an even number of vertices of odd degree.

Proof: Assume that G D .V; E/ is a graph. Split the sum in the handshaking lemma into

those with even degree and those with odd degree:

2e.G/ D

0

@
X

vWd.v/ even

d.v/

1

AC

0

@
X

vWd.v/ odd

d.v/

1

A :

Since both 2e.G/ and the first sum are even numbers, the second sum must also be an even

number. Since the latter sum is a sum of odd numbers, there must be an even number of

them.

Question 220 Is it possible to draw a 3-regular graph on 11 vertices?
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How many graphs?

Any graph on n vertices has at most
�

n
2

�

edges, since there are that many possible 2-subsets

of an n-set. Such a graph could have no edges as well (every vertex is isolated), so for any

graph G,

0 6 e.G/ 6

 

n

2

!

:

The number of possible graphs on n vertices is then 2.n
2/ because each of the

�
n
2

�

possible

edges can either be “in” or “out” of the graph. For example, there are 2.3
2/ D 8 possible

graphs having vertex set Œ3�. These are shown in Figure 6.2.

1

23

1

23

1

23

1

23

1

23

1

23

1

23

1

23

1

23

1

23

1

23

1

23

1

23

1

23

1

23

1

23

Figure 6.2. The eight labeled graphs on three vertices.

Special kinds of graphs

Complete graphs, cycles, and paths

For n > 1 the complete graph on n vertices, denoted Kn, has every pair of vertices joined

by an edge. Here are pictures of the complete graphs Kn for n D 1; 2; 3; 4; 5:

K1 K2 K3 K4 K5

The complete graph Kn has
�

n
2

�

D n.n�1/
2

edges.

For r; s > 1, the complete bipartite graph on r and s vertices, denoted Kr;s , is a graph

for which the vertex set can be partitioned into two blocks, one of size r and one of size s,

such that the edge set contains all possible edges joining two vertices from different blocks.

Here are pictures of the complete bipartite graphs K1;4, K3;3, and K2;5:

K1 4, K3 3, K2 5,

We’ll explain more about bipartite graphs later in this section. A complete bipartite graph

of the form K1;s is sometimes called a star.

Question 221 How many edges does Kr;s have?
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6.1. Basic graph theory 229

For n > 3, the cycle on n vertices, denoted Cn, has n vertices and n edges arranged in

a cycle. Here are pictures of the cycles Cn for n D 3; 4; 5:

C3 C4 C5

For n > 1, the path on n vertices, denoted Pn, has n vertices and n� 1 edges arranged

in a path. Here are pictures of the paths Pn for n D 1; 2; 3; 4:

P3 P4P2P1

The Petersen and Grötsch graphs

The Petersen graph and the Grötsch graph appear in Figure 6.3. Both are 3-regular graphs

and are important because they often serve as counterexamples to or testing grounds for

new theories.

The Petersen graph The Gr tsch graphö

Figure 6.3. The Petersen and Grötsch graphs.

Subgraphs

Given a graph G D .V; E/, we say that a graph H is a subgraph of G, and write H � G,

provided V.H/ � V.G/ and E.H/ � E.G/. Here again is the graph G1 of Figure 6.1 as

well as two different subgraphs H1 and H2:

G1

1

2 3

4

4

56

H1

1

2

56

H2

1

2

If H is a subgraph of G, then it is sometimes customary to say that G contains H . For

example, the subgraph H2 of G1 is a 3-cycle so we would say that G1 contains C3 as a

subgraph or simply that G1 contains a C3.

Question 222 Does G1 contain a C4? What is the largest cycle that the graph G2 of Figure

6.1 contains?
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We can often tell much about the structure of a graph by studying its subgraphs. In particu-

lar, it is often useful to identify whether a graph contains certain complete graphs or cycles

as subgraphs.

Bipartite graphs

A graph is bipartite provided that its vertex set can be partitioned into two blocks in such a

way that each edge of the graph has one endpoint in each block. The blocks of the partition

are the partite sets.

A graph that is bipartite can be drawn in a way that makes its structure obvious. One

way to do this is to gather all the vertices in one partite set on one side, gather all those in

the other partite set on the other side, and then draw the edges. Visually, every edge should

“bridge the gap” between the partite sets. Another way is to color each vertex either black

or white so that every edge contains one black and one white endpoint. Here is a graph and

two ways to verify that it is bipartite:
1

3

4

6

8

4

6

8

2

5

7

1

2

3

4 5

6

78

1

2

3

4 5

6

78

If a graph G D .V; E/ is bipartite, then it is customary to write G D .V1 [ V2; E/ to

emphasize the partition of the vertex set into two partite sets. The graph we just showed

has V1 D f1; 3; 4; 6; 8g and V2 D f2; 5; 7g.
Is the graph G1 of Figure 6.1 bipartite? If it were, then we can assume without loss of

generality that vertex 1 is colored black and vertex 2 white. But then no matter whether

vertex 4 is colored black or white, it will result in an edge with either two black or two

white endpoints. This graph is not bipartite.

The odd cycle (namely C3) present in the graph G1 ensures that the graph is not bipar-

tite. Perhaps surprisingly, odd cycles are the only way to ruin bipartiteness. The proof of

the following result is included in most graph theory texts.

Theorem 6.1.4 A graph is bipartite if and only if it does not contain any odd cycles.

Question 223 Is the Petersen graph bipartite? Is the Grötsch graph? For what values of

n is Kn bipartite? For what values of n is Pn bipartite?

Walks, paths, and connectedness

We now mention two ways to traverse a graph. Here again are the graphs G1 and G2 of

Figure 6.1.

G1

1

2 3

4

56

1

2

3

4

5

6

7

8

9

10

G2
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A walk in a graph is a finite list of vertices such that any two vertices that are adjacent

on the list are adjacent in the graph. An example of a walk in G1 is .2; 5; 4; 2; 6; 2; 1/ or

just 2542621, and an example of a walk in G2 is .8; 6; 8; 6; 8; 6; 9; 10; 1; 8/. In G1, the list

.2; 5; 1; 2; 6; 2/ is not a walk because 5 and 1 are adjacent on the list but 5 6� 1 in G1. In

general if a walk starts at vertex u and ends at vertex v, then it is a u-v walk.

Although we only need to list the vertices in order to specify the walk, a walk should

be thought of as a list that alternates vertex-edge-vertex-edge, and so on. The length

of a walk is the number of edges traversed and so equals one fewer than the length

of the list. The length of the walk .2; 5; 4; 2; 6; 2; 1/ is 6 and the length of the walk

.8; 6; 8; 6; 8; 6; 9; 10; 1; 8/ is 9.

Question 224 Let v be any vertex of K3;3. How many different length-6 walks start and

end at v?

A path in a graph is a walk that does not contain any repeated vertices. None of the

walks of the previous paragraph are paths, but .2; 6; 5; 4/ and .2; 5/ are paths in G1.

Question 225 Find a 4-3 path of length 9 in G2.

A graph is connected provided that for every pair of vertices u and v, there exists a u-v

path. Otherwise the graph is disconnected. Informally speaking, connected means that it is

possible to travel from any one vertex to any other vertex along the edges of the graph. The

graph G1 is disconnected since there is, for example, no 1-3 path. The graph G2 however

is connected because there is a path joining every pair of vertices. Even though there are
�

10
2

�

D 45 such pairs, it is not necessary to check for a path between every one. In Question

225, you found a path containing all 10 vertices and that implies G2 is connected.

A graph may look connected but may in fact be disconnected, as graph H shown below

does:

H H1

H2

The graph H is in two “pieces” called components. A connected component or simply

component of a graph is a connected subgraph that can’t be made larger by the addition

of any vertices or edges. The component H1 is a complete graph on 4 vertices and the

component H2 is a 4-cycle. We write H D H1[H2 to indicate that H is disconnected and

that its components are H1 and H2. The graph G1 shown earlier also has two components

while G2, being connected, has one component.

Question 226 Draw the graph K2;3 [ P5 [K4 [K1.

Labeled graphs, unlabeled graphs, and isomorphism

In the graphs shown in this section, sometimes we have labeled the vertices and other times

we have not. For example, the graphs of Figure 6.1 have labeled vertices but the examples

of complete graphs, cycles, and paths that we showed had unlabeled vertices. Vertices

can generally be left unlabeled when we care only about the structure of the adjacency

relationships in a graph. In drawing K5, for example, the pertinent structure is that every
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232 6. Combinatorics on Graphs

pair of vertices is adjacent. It doesn’t matter whether we label the vertices with the integers

1-5, the letters a-e, or the names Sue, Ray, Jason, Carrie, and Ellie.

The problem of counting unlabeled graphs is much harder than that of counting labeled

graphs. We found that there were 2.3
2/ D 8 different labeled graphs on three vertices and

these were pictured in Figure 6.2. However, there are only four different unlabeled graphs

on three vertices:

Each unlabeled graph is a representative from a different equivalence class, where we con-

sider two labeled graphs equivalent provided they “look” the same when their vertex labels

are deleted.

Question 227 How many different unlabeled graphs on four vertices have exactly three

edges?

“Look the same” is a nebulous concept. We instead need the concept of isomorphism.

We motivate it before launching into a general definition. It’s not too hard to see that the

two graphs on the left represent the same unlabeled graph, in this case the cycle C4. But

what about the two on the right?

One way to make sure they are exactly the same graph is to label the vertices of each

with the same set of labels and then check that their edge sets are equal. Here is one such

labeling:

1

12

2

3
3

a
a

b b

c
c

Both graphs have the same edge set, namely f1a; 1b; 1c; 2a; 2b; 2c; 3a; 3b; 3cg. (Here we

write 1a as an abbreviation for f1; ag, etc.) They indeed represent the same unlabeled

graph.

It is not necessary to use the same labels for each vertex set, so long as all adjacency

relations are preserved. The following definition makes this precise.

Definition 6.1.5 Graphs G and H are isomorphic provided that there exists a bijection

� W V.G/ �! V.H/ that satisfies the following property: for each u; v 2 V.G/, we have

u � v in G if and only if �.u/ � �.v/ in H . The function � is called an isomorphism. If

G and H are isomorphic, we write G Š H .

If two graphs are isomorphic, then every graph parameter or structural property possessed

by one of the graphs is also possessed by the other. This is most often used (in the contra-

positive) to prove that two graphs are not isomorphic by exhibiting a property possessed

by one graph and not by the other.
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Example: determining whether two graphs are isomorphic

Are the following graphs isomorphic?

G H

We cannot conclude that they are not isomorphic simply by saying the drawings are

“close but don’t quite look the same.” Since the same unlabeled graph can be drawn in

very different-looking ways, we cannot appeal to any characteristic of the drawing. What

is needed is a property that G has and H doesn’t have, or vice versa.

Notice that both graphs have the same number of vertices and edges. Also, they both

have four vertices of degree 2 and four of degree 3. But notice in G that every edge joins a

degree-2 vertex with a degree-3 vertex. This is not the case in H , so G 6Š H .

Question 228 Draw two 2-regular graphs on six vertices that are not isomorphic.

Some combinatorial properties

Vertices of same degree

In any group of n people, there must be two people that have exactly the same number

of acquaintances within the group. If we consider the group of people to be the set of

vertices and if we draw an edge between two vertices whenever the corresponding people

are acquainted, then the statement about people becomes the following existence statement

about graphs.

Theorem 6.1.6 In any graph there must be two vertices of the same degree.

Proof: Assume G D .V; E/ is a graph on n vertices. If G has a vertex of degree n�1, then

this vertex is adjacent to every other vertex in the graph. That means there are no degree-0

vertices so we have 1 6 d.v/ 6 n � 1 for all v. Since there are n vertices, the pigeonhole

principle implies that there are two vertices of the same degree.

If G has no vertex of degree n � 1, then we have 0 6 d.v/ 6 n � 2 for all v. Again

since there are n vertices, the pigeonhole principle implies that there are two vertices of

the same degree.

Regular bipartite graphs

Our next counting theorem shows that if a bipartite graph is regular, then this forces the

two vertex sets to have the same size.

Theorem 6.1.7 If G D .V1 [ V2; E/ is a k-regular bipartite graph, where k > 0, then

jV1j D jV2j.
Combinatorial proof: Assume that G D .V1[V2; E/ is a k-regular bipartite graph, where

k > 0. How many edges does G have?

Answer 1: Since G is bipartite, every edge touches exactly one vertex of V1. Since G

is k-regular, it has kjV1j edges.

Answer 2: Since G is bipartite, every edge touches exactly one vertex of V2. Since G

is k-regular, it has kjV2j edges.
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234 6. Combinatorics on Graphs

This proves that kjV1j D e.G/ D kjV2j, and we can then conclude that jV1j D jV2j
because k > 0.

Counting walks

Question 224 addressed the question of counting certain length-6 walks in the complete

bipartite graph K3;3. Label the vertices of this graph as follows:
1

2

3

4

5

6

To count, say, the length-6 walks that start at 1 and end at 3, we need to count lists of the

form .1; v1; v2; v3; v4; v5; 3/ where the choices for v1-v5 respect the adjacency relation-

ships in the graph. Since K3;3 is 3-regular and bipartite, this is easy: there are three choices

for each of the five vertices, so there are 35 D 243 walks.

Question 229 Consider K3;5 and let v be any vertex in the partite set of size 3. How many

length-10 walks start and end at v? Also, answer the same question but for length-9 walks.

If a graph is not highly structured then it may not be as straightforward to count walks.

Here is a clever way to do so using matrix multiplication. Given a labeled graph G D
.V; E/ on n vertices, its adjacency matrix is that n � n matrix A where Aij D 1 when

i � j and Aij D 0 otherwise.

Here is the adjacency matrix B of the graph G1. The rows and columns of B are labeled

with the vertex set V.G1/.

G1

1

2 3

4

56

0

B
B
B
B
B
B
B
@

1 2 3 4 5 6

1 0 1 0 1 0 0

2 1 0 0 1 1 1

3 0 0 0 0 0 0

4 1 1 0 0 1 0

5 0 1 0 1 0 1

6 0 1 0 0 1 0

1

C
C
C
C
C
C
C
A

D B:

Notice that this matrix is symmetric (Bij D Bj i for all i; j ) and has 0s on the diagonal.

Now, if we want to know the number of 1-4 walks of length 5, we simply compute B5

and look at the entry in row 1 and column 4. Using MATLAB we find

B5 D

0

B
B
B
B
B
B
B
@

1 2 3 4 5 6

1 24 45 0 38 33 27

2 45 64 0 58 58 45

3 0 0 0 0 0 0

4 38 58 0 44 52 33

5 33 58 0 52 44 38

6 27 45 0 33 38 24

1

C
C
C
C
C
C
C
A

so the answer is 38. Moreover, for any vertices i and j the number of i -j walks of length

5 is readily available because it equals the .i; j /-entry of B5. For example, the number of

6-2 walks of length 5 is 45.
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Question 230 Assume that this walk-counting property is true. Why are the entries in row

3 and column 3 all 0? Also, why is B5 symmetric? Explain both of your answers in the

context of counting walks in G1.

Why does this work? You will formally establish it by induction in Exercise 13 but here

is the general idea. The result we wish to prove is as follows.

Theorem 6.1.8 Let G be a graph and let A be its adjacency matrix. For all k > 1, the

.i; j /-entry of Ak equals the number of i -j walks of length k in G.

Let’s look at the example of G1 to illuminate the inductive step. Assume that the matrix

B5 correctly counts walks as stated in the theorem. That is, for all i and j ,

B5
ij D number of i -j walks of length 5 in G1.

Based on the truth of this, let’s show why B6
1;4 equals the number of 1-4 walks of length 6.

The key is to write B6 D BB5 and then use the definition of matrix multiplication and the

inductive hypothesis. The definition of matrix multiplication gives

B6
1;4 D

6
X

kD1

B1;kB5
k;4

D B1;1B5
1;4 C B1;2B5

2;4 C B1;3B5
3;4 C B1;4B5

4;4

C B1;5B5
5;4 C B1;6B5

6;4:

But B1;2 D B1;4 D 1 while the rest of the Bk;4 D 0. Therefore

B6
1;4 D B5

2;4 C B5
4;4 D 58C 44 D 102:

Despite the cumbersome notation this makes perfect sense: to specify a length-6 walk from

1 to 4, the first edge we traverse must take us either to vertex 2 or vertex 4.

� If we start by traversing f1; 2g, the remainder of the walk is a length-5 walk from 2 to

4. There are B5
2;4 D 58 of these.

� If we start by traversing f1; 4g, the remainder of the walk is a length-5 walk from 4 to

4. There are B5
4;4 D 44 of these.

By the sum principle there are B5
2;4 C B5

4;4 D 58C 44 walks. This is the basic idea that is

used to prove the theorem. (See Exercise 13.)

A note on multigraphs

At the beginning of this section we defined a graph as a pair G D .V; E/ where V is a finite

set and E is a set of 2-subsets of V . This definition does not allow for two copies of the

same edge to appear in the graph (because E is a set instead of a multiset) nor does it allow

for an edge to join a vertex to itself (because the edges are 2-subsets, not 2-multisets). If

either of these restrictions are relaxed then we get a multigraph. Here is an example:

M
1

2 3 4
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236 6. Combinatorics on Graphs

This multigraph M D .V; E/ has

V D f1; 2; 3; 4g
E D

˚

f1; 1g; f1; 2g; f1; 3g; f1; 3g; f1; 3g; f1; 4g; f2; 3g; f3; 4g; f4; 4g
	

:

Notice that each edge is a 2-multiset taken from V and that E itself is a multiset.

The edge f1; 1g is a loop and the edges f1; 3g; f1; 3g; f1; 3g are multiple edges. A loop

contributes 2 to the degree of its incident vertex, so in this multigraph

d.1/ D 7; d.2/ D 2; d.3/ D 5; d.4/ D 4:

Question 231 Does the handshaking lemma still hold for multigraphs? Give a proof or

counterexample.

Summary

In this section we provided a large amount of information and terminology about graphs.

We also proved some basic enumerative and existence results about graphs.

Exercises

1. How many labeled graphs on n vertices have exactly m edges?

2. Let G be the graph whose vertex set is the set of 2-subsets of Œ5� and where two

vertices are adjacent if and only if their corresponding subsets are disjoint.

(a) Draw G.

(b) Find, with proof, a graph mentioned in this section that is isomorphic to G.

3. Prove: if G is a connected graph with n vertices and n � 1 edges, where n > 2, then

G has at least two vertices of degree 1.

4. There are 2.4
2/ D 26 D 64 labeled graphs on 4 vertices. How many unlabeled (i.e.,

non-isomorphic) graphs on 4 vertices are there?

5. Determine, with proof, whether the following graph is isomorphic to K3;3.

6. Let G D .V; E/ be a graph. The complement of G is that graph G D .V; Ec/ where

Ec is the complement of E relative to the edge set of Kn.G/. In other words, for all

i; j 2 V.G/ we have fi; j g 2 Ec if and only if fi; j g 62 E .

Prove that if G Š G, then either n.G/ � 0 .mod 4/ or n.G/ � 1 .mod 4/.

7. Prove that if ı.G/ > k, then G contains a path of length at least k.

8. Prove that the number of labeled graphs in which every vertex has even degree is

2.n�1
2 /.
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6.1. Basic graph theory 237

9. For k > 1, the graph Qk is called the k-dimensional cube. Its vertex set is the set

of k-digit binary numbers, and two vertices are adjacent if and only if their binary

numbers differ in exactly one place. Here are Q1, Q2, and Q3:

0 1

00

000

01

10 11

001

100 101

111110

011010

Q1

Q2 Q3

Notice that n.Qk/ D 2k .

(a) Find e.Qk/.

(b) Prove that Qk is bipartite, for all k > 1.

10. (based on West (2001)) Use graphs to give combinatorial proofs of the following

results.

(a)

 

n

2

!

D
 

k

2

!

C k.n � k/C
 

n� k

2

!

.

(b) Suppose n1; n2; : : : ; nk are positive integers. If
Pk

iD1 ni D n, then

k
X

iD1

 

ni

2

!

6

 

n

2

!

:

When does equality hold?

11. Prove that if G is an n-vertex graph with ı.G/ > bn=2c, then any two vertices are

either adjacent or have a common neighbor.

12. (linear algebra) Find the number of...

(a) 5-5 walks of length 8 in the graph G1 of Figure 6.1.

(b) 000-001 paths of length 8 in the cube graph Q3. (See Exercise 9.)

(c) u-v walks of length 8 in the cycle C5, where u and v are any two adjacent ver-

tices.

13. (linear algebra) Prove Theorem 6.1.8 by induction on k.

14. (linear algebra) Let A be the adjacency matrix of Kr;r . Assume that A is written in

the form

A D
�

0 J

J 0

�

where J is the r � r matrix of all 1s and 0 is the r � r zero matrix. Find, with proof,

a formula for Ak .

15. (linear algebra) Let A be the n�n matrix that has 0s on the diagonal and 1s everywhere

else. Find a formula for Ak by counting walks in a certain graph.
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Travel Notes

By most accounts graph theory had its birth in the 1730s when Leonhard Euler solved the

now-famous “bridges of Königsberg” problem. The field then mostly lay dormant until the

mid-to-late 1800s when mathematicians such as Arthur Cayley and James Joseph Sylvester

took an interest and produced some key results. In the 20th century the field quickly ex-

ploded into the active research area that it is today thanks to practical applications as well

as the rise of the computer.

The term “graph” was coined by Sylvester who in 1877 was installed as the inaugural

professor of mathematics at the newly-opened Johns Hopkins University. Some authors use

“simple graph” instead of just “graph” to denote a graph without loops or multiple edges.

West (2001) and Chartrand & Zhang (2005) are excellent, comprehensive introductions to

graph theory.

6.2 Counting trees

The most fundamental and important graphs in many applications, first and foremost com-

puter science, are trees. Figure 6.4 shows three examples. A tree is a connected, acyclic

graph. A forest is an acyclic graph. Naturally each connected component of a forest is a

tree. In this section we mention a few basic properties of trees and then investigate two enu-

meration questions. The first is simply to count the number of labeled trees on n vertices,

and we give two of the several possible proofs of this. We then take up the enumeration of

binary search trees. These are a fundamental data structure in computer science.

Question 232 Give a quick explanation why trees are bipartite.

Essential properties of trees

Leaves of a tree

A leaf of a tree is a vertex of degree 1. Each of the trees in Figure 6.4 possesses at least

two leaves and this is no accident. Any tree on at least two vertices must have at least two

leaves. The proof uses an important technique: maximality.

Theorem 6.2.1 If T is a tree with at least two vertices, then T has at least two leaves.

Proof: Assume that T is a tree on n vertices, where n > 2. Let P be a path in T of

maximum length. Call the vertices at the ends of the path v1 and v2. These must be leaves

of T and here is why.

Suppose, for sake of contradiction, that v1 is not a leaf of T . We already know that

some edge, say fv1; wg is on the path P . Our assumption that v1 is not a leaf of T means

T1

T2

T3

Figure 6.4. Three examples of trees.
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6.2. Counting trees 239

that there is some other vertex u adjacent to v1. This vertex u cannot be on the path P , for

then P C fv1; ug would be a subgraph of T containing a cycle—impossible since T is a

tree. But neither can u be off the path P , for then P Cfv1; ug would be a longer path in T

than P —impossible since P is already a path of maximum length.

No such vertex u can exist, so therefore v1 is a leaf of T . The same argument shows

that v2 is a leaf of T , so therefore T has at least two leaves.

Deleting a leaf of a tree

Deleting a leaf from a tree leaves a smaller tree. Many proofs involving trees make good

use of this fact, usually within the context of a proof by mathematical induction.

Theorem 6.2.2 If T is a tree with at least two vertices and if v is a leaf of T , then T � v

is also a tree.

Proof: Assume that T is a tree on at least two vertices and that v is a leaf of T . Consider

the graph T � v. We must show that T � v is connected and acyclic.

Deletion of the vertex v cannot create a cycle, so T �v remains acyclic. Is it connected?

Take any two vertices u and w in T � v. These vertices are also in the tree T , so there is a

path Puw in T that joins u and w. This path cannot pass through the vertex v in T because

it is a leaf, and so deletion of v and its incident edge means that the path Puw remains

intact in T � v. Since there is a path between any two vertices of T � v, it follows that

T � v is connected. Therefore T � v is a tree.

Counting the edges of a tree

A graph on n vertices may have anywhere from 0 to
�

n
2

�

edges. A tree on n vertices has

no choice over the number of edges it contains. Observe that in Figure 6.4, T1 has nine

vertices and eight edges, T2 also has nine vertices and eight edges, and T3 has 20 vertices

and 19 edges.

Theorem 6.2.3 Any tree on n vertices contains exactly n � 1 edges.

Proof by induction on n: Let n D 1. The only tree on one vertex is the graph consisting of

a single vertex and no edges. In this case n� 1 D 1 � 1 D 0 so the base case is true.

Assume n is an integer, n > 1, and that any tree on n vertices has exactly n � 1 edges.

Let T be a tree on nC 1 vertices. Since n > 1, we know that nC 1 > 2 so Theorem 6.2.1

guarantees that T has a leaf, say v. Now Theorem 6.2.2 guarantees that T � v is a tree on

n vertices, and so the inductive hypothesis tells us that T � v has n � 1 edges. When we

reattach v to T �v to get T , we have added one edge. This means that T has .n�1/C1 D n

edges. Since T has nC 1 vertices and .nC 1/� 1 D n edges, this completes the proof.

Characterizations of a tree

There are many ways to characterize a tree. We omit the proof of the following theorem

and leave some of the details to the Exercises.

Theorem 6.2.4 If T is a graph on n vertices, then the following statements are equivalent.

1. T is a tree.

2. T is connected and has n � 1 edges.

3. T is acyclic and has n� 1 edges.

4. T is connected, but the deletion of any edge disconnects the graph.
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Counting labeled trees

In the last section we easily answered the question of enumerating the labeled graphs on

n vertices: there are 2.n
2/. Enumerating the labeled trees on n vertices is a different story.

Cayley (1889) first proved the formula of the following theorem.

Theorem 6.2.5 (Cayley) For n > 2, there are nn�2 labeled trees on n vertices.

We present two proofs of it. One is a bijective proof and the other uses a recurrence relation

and induction. Neither is Cayley’s original proof.

Question 233 Draw the 16 labeled trees on four vertices.

A bijective proof of Cayley’s formula

Prüfer (1918) provided the following proof of Cayley’s formula. His method involves a

bijection between the labeled trees with vertex set Œn� and the .n � 2/-lists taken from Œn�.

As there are nn�2 such lists, this proves Cayley’s formula once the bijection is established.

The .n � 2/-list corresponding to a labeled tree is called the Prüfer sequence of the tree.

To construct the Prüfer sequence of a labeled tree: Let L D . /, the empty list. Find

the leaf with the smallest label. Delete this leaf from the tree and append the label of

its neighbor to the end of L. Repeat this until the tree has only two vertices.

Figure 6.5 shows how to construct the 7-list that is the Prüfer sequence of the 9-vertex tree

in the top left corner of the figure. The Prüfer sequence of that tree is .2; 6; 1; 2; 9; 1; 6/.

Question 234 What is the Prüfer sequence of the path of length n where the vertices are

labeled in increasing order from left to right? What is the Prüfer sequence of the n-vertex

path shown below?

1 3 5 6 4 2…

Also, what is the tree that has Prüfer sequence .3; 3; 3; 3; 3/?

It is clear that the function that maps each n-vertex tree to its Prüfer sequence is well

defined, for Prüfer sequences are indeed lists of length n � 2 taken from the set of vertex

labels Œn�. It is worth writing out the correspondence that this function produces for a small

value of n.

Question 235 Find the Prüfer sequence of each of the 16 labeled trees on 4 vertices and

then verify that every possible 2-list taken from Œ4� is represented.

We next consider the trickier issue of reversing the procedure. That is, given an .n�2/-

list taken from Œn� we need to determine the tree to which it corresponds. In the following

procedure, the list U (for “used”) keeps track of vertices as they are considered.

To undo the Prüfer sequence: Let L be any .n� 2/-list taken from Œn�. Let U D . /.

Repeat the following until L is the empty list.

� Let u be the least vertex that appears on neither L nor U .

� Let l be the first vertex on L. Add the edge fl; ug.
� Delete l from L. Add u to the end of U .

When L is the empty list, add the edge joining the two vertices that don’t appear on

U .
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L = ( )

1

2

3

4

56

7

8

9

L = (2)

1

2

4

56

7

8

9

L = (2, 6)

1

2

56

7

8

9

L = (2, 6, 1)

1

2

6

7

8

9

L = (2, 6, 1, 2)

1

2

6

8

9

L = (2, 6, 1, 2, 9)

1

8

9

L = (2, 6, 1, 2, 9, 1)

1

69

L = (2, 6, 1, 2, 9, 1, 6)

69

6

Figure 6.5. Constructing the Prüfer sequence for a nine-vertex tree.

Does this produce a tree? Notice that the procedure produces n�1 edges because one edge

is added per element of L, of which there are n � 2, and then one more edge is added at

the end. That is a good start.

Consider the example L D .4; 4; 7; 1; 3; 4/. This is a 6-list so the tree has vertex set

Œ8�. Figure 6.6 shows what this procedure does with L. The right-hand column of the table

keeps track of the order in which the procedure adds the edges.

Question 236 Apply the procedure to L D .2; 6; 1; 2; 9; 1; 6/ and verify that it produces

the tree of Figure 6.5.

To see that the collection of edges that the procedure adds produces a tree, consider

adding them in the reverse order.
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List L List U Edge added

.4; 4; 7; 1; 3; 4/ . / a D f4; 2g

.4; 7; 1; 3; 4/ .2/ b D f4; 5g

.7; 1; 3; 4/ .2; 5/ c D f7; 6g

.1; 3; 4/ .2; 5; 6/ d D f1; 7g

.3; 4/ .2; 5; 6; 7/ e D f3; 1g

.4/ .2; 5; 6; 7; 1/ f D f4; 3g

. / .2; 5; 6; 7; 1; 3/ g D f8; 4g

1 23

4

5

6

7 8
a

b

c

e

d f
g

Figure 6.6. Undoing the Prüfer sequence.

Question 237 Draw the vertices 1-8 and then iteratively add edges g; f; e; d; b; c; a in

that order. Notice that the graph being “grown” always stays connected. Do the same for

the sequence L D .2; 6; 1; 2; 9; 1; 6/ of the previous Question.

As we add the edges listed in the table, from bottom to top, notice that a new vertex is

connected at each step. In fact these new vertices are those of the final U in reverse order.

When we add any edge (other than the one at the bottom of the table) of the form fl; ug
where l was the vertex deleted from the current L, this vertex l must appear at least once

among the edges below fl; ug on the table. This is because once once all occurrences of l

are deleted from L, then l will eventually be a least vertex appearing on neither L nor U .

It might never get put on U , but if not then it will be part of the last edge of the table. This

proves that once all the edges are added, we have a connected graph on n vertices and n�1

edges. This is a tree by Theorem 6.2.4.

It can be observed that the procedure we gave for undoing the Prüfer sequence is the

correct inverse function. That is, let f W T �! L be the function that finds the Prüfer

sequence of a tree, where T is the set of labeled n-vertex trees and L is the set of .n � 2/-

lists taken from Œn�. Then the function g W L �! T that constructs a tree from an .n�2/-list

indeed satisfies g.f .T // D T for all labeled trees T . This establishes f as a bijection and

proves Cayley’s theorem.

Side effects

Theorem 6.2.6 If T is a tree and L is the Prüfer sequence of T , then any vertex v appears

exactly d.v/ � 1 times in L.

Proof: Assume that T D .V; E/ is a tree and L is its Prüfer sequence. In computing L we

iteratively “pruned” T until only two vertices and the edge between them were left. Call

these vertices i and j .

Now let v 2 V . If v is neither i nor j , then v was deleted at some point in the compu-

tation of L. Prior to its deletion, we had deleted all of its neighbors except for one (since v

must be a leaf in order to be deleted) so v was recorded d.v/ � 1 times in L.



“master” — 2010/9/20 — 12:30 — page 243 — #261
i

i

i

i

i

i

i

i

6.2. Counting trees 243

If v is one of i and j , then all of its neighbors were deleted except one (either j or i ,

respectively) so again v appears d.v/ � 1 times in L.

Prüfer’s idea tells us that the labeled trees with vertex set Œn� are in one-to-one corre-

spondence with the .n � 2/-lists taken from Œn�. The previous theorem shows further that

the Prüfer sequence records each vertex exactly d.v/ � 1 times. So, the labeled trees with

vertex set Œn� are in one-to-one correspondence with the .n � 2/-lists taken from Œn� in

which each i 2 Œn� appears exactly d.i/ � 1 times. The multinomial coefficients count the

latter set. (Recall their definition in Section 4.1.)

Corollary 6.2.7 For n > 2, there are
 

n� 2

d1 � 1; d2 � 1; : : : ; dn � 1

!

labeled trees with vertex set Œn� such that vertex i has degree di , for i 2 Œn�.

Question 238 In the multinomial coefficient, it should be the case that the sum of the

bottom numbers equals the top number. Does it? Give a quick calculation.

Another proof of Cayley’s formula
Here is a recursive proof of Cayley’s formula due to Riordan & Renyi. It illustrates a useful

problem-solving technique: when faced with a difficult problem, solve a more difficult

problem. Their approach is to count forests of a particular type and then specialize to trees

at the end.1

Define T .n; k/ to be the number of labeled forests such that

� the vertex set is Œn�,

� the forest has k trees, and

� each vertex in Œk� is in a different tree.

For example, T .4; 2/ D 8 because here are the labeled forest with vertex set Œ4� consisting

of two trees where the vertices in Œ2� D f1; 2g are in different trees:

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

Notice that T .n; 1/ is just the number of labeled trees on n vertices.

First we derive a recurrence. How many labeled forests are there on vertex set Œn�, con-

taining k trees, and where each vertex in Œk� is in a different tree? One answer is T .n; k/.

For another answer we divide into cases according to the degree of vertex 1. Its neigh-

bors must be chosen from the set fkC 1; kC 2; : : : ; ng because vertices 2; 3; : : : ; k are not

in the same tree as vertex 1. If vertex 1 has i neighbors, where 0 6 i 6 n � k, then there

are
�

n�k
i

�

ways to choose them. At this point our forest looks like this:

1

2 k

i vertices

v1 vi

1Actually the “more difficult problem” will only appear so because of the additional structure imposed. Addi-
tional structure often makes a counting problem easier.
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Of course, if vertex 1 has i D 0 neighbors then no edges are present. Now for each way to

choose vertex 1’s neighbors, there are T .n�1; k�1Ci/ ways to complete the labeled forest.

This is because, if we ignore vertex 1 and its incident edges for the moment, the remaining

graph must be a labeled forest on n � 1 vertices in which each of vertices 2; : : : ; k and

v1; : : : ; vi are in different trees. There are k � 1C i such vertices. By summing over all i ,

we have shown

T .n; k/ D
n�k
X

iD0

 

n� k

i

!

T .n � 1; k � 1C i/ where 1 6 k 6 n. (6.1)

The boundary conditions are T .n; 0/ D 0 for all n > 1, and T .0; 0/ D 1.

Now that the recurrence is established, the rest of the proof shows that the formula

T .n; k/ D knn�k�1 holds for all n and k. We give a careful proof that serves as a good

example of a more complicated induction argument.

Theorem 6.2.8 The number of labeled forests such that the vertex set is Œn�, the forest has

k trees, and each vertex in Œk� is in a different tree is T .n; k/ D knn�k�1. In particular,

the number of labeled trees with n vertices is T .n; 1/ D nn�2.

Proof: We prove by induction on n that the formula T .n; k/ D knn�k�1 holds for all k

satisfying 1 6 k 6 n. For the base case, let n D 1. We must show that

T .1; k/ D k � 11�k�1 for all k satisfying 1 6 k 6 1.

The only such k is k D 1. Since T .1; 1/ D 1 and 1 � 11�1�1 D 1, the base case is true.

Now assume n is an integer, n > 1, and that the statement is true for n. That is,

T .n; k/ D knn�k�1 holds for all k satisfying 1 6 k 6 n. (6.2)

We must prove that T .n C 1; k/ D k.n C 1/nC1�k�1 D k.n C 1/n�k for all k satisfying

1 6 k 6 nC 1.

By the recurrence (6.1) we have

T .n C 1; k/ D
nC1�k
X

iD0

 

nC 1 � k

i

!

T .n; k � 1C i/:

We can apply the inductive hypothesis of equation (6.2) to T .n; k � 1 C i/ as long as

1 6 k � 1C i 6 n. This holds for all k satisfying 2 6 k 6 n, so we will have to address

the k D 1 and k D nC 1 cases separately.

The k D nC 1 case is easy. Notice that T .nC 1; nC 1/ D 1. Also, when k D nC 1

in the formula we get

.nC 1/.n C 1/nC1�.nC1/�1 D .nC 1/.nC 1/�1 D 1;

so T .nC 1; k/ D k.nC 1/nC1�k�1 D k.n C 1/n�k when k D nC 1. The k D 1 case is

left to Question 239 after the proof.
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The hard case is when k satisfies 2 6 k 6 n. Use equation (6.2) to write

T .nC 1; k/ D
nC1�k
X

iD0

 

nC 1 � k

i

!

T .n; k � 1C i/

D
nC1�k
X

iD0

 

nC 1 � k

i

!

.k � 1C i/nn�.k�1Ci/�1

D
nC1�kX

iD0

 

nC 1 � k

i

!

.k � 1C i/nn�k�i :

Split the sum in two:

D
nC1�k
X

iD0

 

nC 1 � k

i

!

.k � 1/nn�k�i

„ ƒ‚ …

Sum I

C
nC1�k
X

iD0

 

nC 1 � k

i

!

inn�k�i

„ ƒ‚ …

Sum II

:

Let’s work on Sum I first. Factor out k�1
n

and then use the binomial theorem to obtain

Sum I D k � 1

n

nC1�k
X

iD0

 

nC 1 � k

i

!

nnC1�k�i

D k � 1

n
.nC 1/nC1�k :

Now work on Sum II. First factor out n C 1 � k in preparation for using the property
�

m
r

�
r
m
D
�

m�1
r�1

�

. After that, re-index the sum and use the binomial theorem:

Sum II D .nC 1 � k/

nC1�k
X

iD0

 

nC 1 � k

i

!

i

nC 1 � k
nn�k�i

D .nC 1 � k/

nC1�k
X

iD0

 

n� k

i � 1

!

nn�k�i

D .nC 1 � k/

n�k
X

j D0

 

n � k

j

!

nn�k�j �1

D nC 1 � k

n

n�k
X

j D0

 

n � k

j

!

nn�k�j

D nC 1 � k

n
.nC 1/n�k :

Now we can finish it:

T .nC 1; k/ D Sum IC Sum II

D k � 1

n
.nC 1/nC1�k C nC 1 � k

n
.nC 1/n�k

D .nC 1/n�k

n

�

.k � 1/.nC 1/C nC 1 � k
�

D k.nC 1/n�k :
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This completes the proof.

Question 239 Prove the k D 1 portion of the inductive step. That is, use the inductive

hypothesis to prove T .nC 1; 1/ D .nC 1/n�1.

Counting binary trees

Next we turn our attention to the enumeration of a different type of tree. Consider the

following tree that stores a word at each vertex.
stores

each vertex

wordthe

that tree

following
a

consider

at

This tree is to be interpreted in a different way than other trees. For one, the way in which

it is drawn on the page makes a difference. The black vertex at the top is the root. Each

of the vertices below it is a child of the root. The vertex labeled “each” is the left child of

the root and the vertex labeled “vertex” is the right child of the root. The vertex labeled

“consider” has a left child but no right child. This is an example of a rooted binary tree or

simply binary tree.

Each vertex in a binary tree has a left subtree and a right subtree. The left subtree of v

is the binary tree rooted at the left child of v and containing only the portion of the original

tree at or below v. The right subtree is defined similarly. A subtree can be empty, as the

right subtree of the vertex labeled “consider” is. A subtree can also consist of a single

vertex, as the left subtree of the vertex labeled “consider” does.

The binary tree shown above is actually being used as a so-called binary search tree. It

stores the 11 words in the sentence before the picture of the tree according to the following

rule: at every vertex v, the word stored at v comes (1) alphabetically after every word in

the left subtree of v, and (2) alphabetically before every word in the right subtree of v.

Binary search trees are fundamental and important data structures in computer science.

They enable efficient storage, sorting, and searching of data.

Our goal is to determine the number of binary trees on n vertices. Let this number be

ˇn. Clearly ˇ1 D 1 and ˇ2 D 2. The binary trees on three vertices are

so ˇ3 D 5. It will be convenient to define ˇ0 WD 1. So far we have

n 0 1 2 3 4

ˇn 1 1 2 5 ?

Question 240 Determine ˇ4 by writing out all binary trees on four vertices.
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A binary tree is inherently recursive: the left and right subtrees of the root are them-

selves binary trees. So, to determine ˇn we derive a recurrence relation and then solve it

using generating functions. Begin by drawing the root at the top. Now we have two deci-

sions to make: In how many ways can we specify each of the left and right subtrees of the

root? For example, to determine ˇ4 we first place the root and then consider the following

four cases depending on how many vertices are in the left subtree of the root:

0
vertices

3
vertices

1
vertex

2
vertices

2
vertices

1
vertex

3
vertices

0
vertices

Notice that if, say, the left subtree has zero vertices then it is empty—there is no left-edge

present from the root. The convention ˇ0 D 1 takes care of this nicely. By counting each

of the four cases and adding their answers we get

ˇ4 D ˇ0ˇ3 C ˇ1ˇ2 C ˇ2ˇ1 C ˇ3ˇ0

D .1/.5/C .1/.2/ C .2/.1/C .5/.1/

D 14

so there are 14 binary trees on four vertices.

Question 241 Determine ˇ5 using this method.

In general, the recurrence relation is

ˇ0 D 1

ˇn D
n�1
X

iD0

ˇi ˇn�1�i for n > 1.

This is a nonlinear recurrence relation but we have solved it before. In Section 4.1, we

determined the number of ways to triangulate a regular n-gon, where n > 3. This number is

Tn D
1

n � 2

 

2n� 4

n� 1

!

:

The recurrence and the initial conditions for Tn and for ˇn are the same but we have to

adjust the indices. The correct adjustment is ˇn D TnC2, so we get

ˇn D
1

.nC 2/� 2

 

2.nC 2/� 4

.nC 2/� 1

!

D 1

n

 

2n

nC 1

!

D 1

nC 1

 

2n

n

!

and therefore we have the following theorem.

Theorem 6.2.9 For n > 1, he number of binary trees on n vertices is
1

nC 1

 

2n

n

!

.

The number 1
nC1

�
2n
n

�

is the famous n-th Catalan number. The Catalan numbers pop up in

combinatorial problems about as often as the Fibonacci numbers do.

Question 242 Based on the work in Section 4.1, show that ˇn D TnC2 is indeed the

correct correspondence between the two number sequences fTkgk>3 and fˇkgk>1.
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Summary

A tree is a connected acyclic graph. After deriving some basic properties of trees, we

considered two difficult problems concerning their enumeration. In the first, we determined

that the number of labeled trees on n vertices is nn�2. This is known as Cayley’s formula.

In the second, we determined that the number of binary trees on n vertices equals the

n-th Catalan number. The techniques we used ranged from bijective proof to recurrence

relations and induction to generating functions.

Exercises

1. Prove: a forest with n vertices and k components has n � k edges. Explain how this

generalizes Theorem 6.2.3.

2. Improve Theorem 6.2.1 by proving that any tree has at least � leaves, where � is the

maximum degree in the graph.

3. Prove Theorem 6.2.4.

4. Let G be a labeled graph and let e be any edge. A spanning tree of G is a subgraph

of G that is a tree and that contains every vertex of G. Define �.G/ to be the number

of spanning trees of G. Give a combinatorial proof: �.G/ D �.G � e/C �.G � e/.

(Here G � e, read “G contract e,” is the (multi)graph obtained from G by deleting

the edge e and then combining the endpoints of e in to one vertex, bringing along all

incident edges. See also the description of this operation in Section 6.3.)

5. Use the recurrence of the previous exercise to find the number of spanning trees of

the following labeled graphs.

(a) C5

(b) K4

(c) Kn � e, where e is any edge of Kn

6. (linear algebra) The following result is known as the matrix-tree theorem. Let G be

a connected labeled graph with adjacency matrix A. Let M WD D � A where D is a

diagonal matrix where the degrees of the vertices of G appear on the diagonal. Then

the number of spanning trees of G equals the cofactor of any element2 of M . Use this

to find the number of spanning trees of C5, K4, K5, and K3;3.

7. Prove that T .n; n � 1/ D n � 1 and T .n; n � 2/ D .n � 2/n by counting the trees

involved and not using the formula for T .n; k/.

8. Here is another way to prove Cayley’s formula. Let L.n; k/ denote the number of

labeled trees with vertex set Œn� and where vertex n has degree k.

(a) Use properties of multinomial coefficients (see Section 4.1) and Corollary 6.2.7

of this section to prove that L.n; k/ D
�

n�2
k�1

�

.n � 1/n�k�1.

(b) Derive Cayley’s formula by summing L.n; k/ over appropriate values of k.

2The cofactor of an element in position .i; j / of M is .�1/iCj times the determinant of the matrix obtained
by deleting from M the row and column in which the element appears.



“master” — 2010/9/20 — 12:30 — page 249 — #267
i

i

i

i

i

i

i

i

6.3. Coloring and the chromatic polynomial 249

9. Let �n equal the number of ternary trees on n vertices, for n > 0. A ternary tree is

similar to a binary tree but each vertex can have a left, middle, and right child. Set

�0 WD 1.

(a) Verify that �1 D 1, �2 D 3, and �3 D 12, by drawing the possible trees.

(b) Determine �4 via a recurrence relation. Then derive a recurrence relation for �n.

(c) Let T .x/ be the OGF of f�ngn>0. Prove that T .x/ D x
�

T .x/
�3 C 1. Comment

on the prospect of finding a formula for �n like that of Theorem 6.2.9.

Travel Notes

Arthur Cayley (1821–1895) is perhaps better known for his work in algebra. Many of the

known proofs of Cayley’s formula are discussed in Moon (1967) but still more have been

discovered since then.

Recursion is a central theme in computer science so it is natural that a recursive struc-

ture like a binary tree can be counted using a recurrence relation. The field of data structures

—essentially the study of the storage and manipulation of data in a computer—has gen-

erated numerous combinatorial problems on graphs. Perhaps the best reference for the

mathematics of algorithms and data structures is the book by Cormen, Leiserson & Rivest

(1990).

6.3 Coloring and the chromatic polynomial

We now turn to the problem of coloring the vertices of a graph which, at least initially,

appears to have nothing to do with counting. Given a graph, the goal of the coloring prob-

lem is to determine the fewest number of colors necessary so that each vertex of the graph

can be assigned a color in such a way that adjacent vertices receive different colors. The

coloring problem is therefore an optimization problem.

Figure 6.7 shows two (unlabeled) graphs that have been colored. The colors are a; b; c

in the graph G on the left and the colors are a; b; c; d; e in the graph H on the right. For G,

it is not possible to use fewer colors for if only two colors were available then we would

be forced to assign the same color to adjacent vertices.

a

a

b

ab

c

e

d b

d

c

a e

G
H

Figure 6.7. Proper colorings of some graphs.

Question 243 Can the graph H on the right be colored with fewer colors? Find the fewest

number required and show how to color it with that many colors.

Applications of coloring

“Coloring” may sound juvenile but it has many applications. Here are two.
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Scheduling

A college must schedule final exams so that no student has two exams scheduled at the

same time. On the left in the figure below is a graph representing a small portion of the

schedule. Each course gets a vertex, and two courses are joined by an edge whenever there

is at least one student enrolled in both courses. (This is an example of what is sometimes

called a “conflict graph.”)

CJ101

MATH133 MATH120

MATH236

ENGL203

PH204

CJ101

MATH133 MATH120

MATH236

ENGL203

PH204

b

c

a

a b

a

On the right is a coloring of the vertices (courses) using three colors a; b; c. No two adja-

cent vertices receive the same color. In the context of the scheduling problem, the colors

correspond to time slots. This means that we can schedule, say, the MATH133, ENGL203,

and MATH236 finals from 8–10 A.M., the MATH120 and PH204 finals from 10:15 A.M.–

12:15 P.M., and the CJ101 final from 1–3 P.M., and no student will have two exams scheduled

in the same slot.

Question 244 Is it possible to schedule the exams using only two time slots? Justify.

A small problem like the one above is easy enough but it becomes much more difficult

when hundreds of courses are involved.

Map coloring

Get a map of the lower 48 states and color each state in such a way that no states sharing

a border receive the same color. (States like Arizona and Colorado meet at a corner but do

not share a border.) How many colors do you need? The answer is four. In addition it is

true that four is the maximum number of colors necessary for any map of countries, states,

counties, etc., no matter how convoluted.3

This problem—known as the four-color problem—was posed as a mathematical prob-

lem in the late 1800s. After several incorrect proofs (including one which was believed to

be correct for a 10-year period) it was finally proved in 1976 by Appel & Haken and is

now known as the four-color theorem.

Colorings, proper colorings, and chromatic number

We first explain some of the terminology of coloring. A coloring of a graph is simply an

assignment of colors to the vertices of the graph, one color per vertex. In a coloring there

is no requirement that adjacent vertices receive different colors. A coloring that uses k

different colors is a k-coloring.

A proper coloring is a coloring in which adjacent vertices receive different colors.

Equivalently, a proper coloring is a coloring in which no edge has both endpoints the same

color. A proper k-coloring is a proper coloring that uses k different colors. If a graph has a

proper k-coloring then we say the graph is k-colorable. Please note the distinction between

3Almost. Any country/state/county must be one contiguous region. Such maps are called “planar maps.”
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k-coloring and k-colorable. The latter involves a proper coloring while the former does not

necessarily.

Both of the colorings shown in Figure 6.7 are proper colorings. The coloring of G is

a proper 3-coloring and the coloring of H is a proper 5-coloring. In other words, these

colorings show that G is 3-colorable and that H is 5-colorable. Our main interest in this

section is in the smallest value of k for which the graph is k-colorable.

Definition 6.3.1 For any graph G the chromatic number of G, denoted by �.G/, is the

smallest positive integer k for which G is k-colorable. That is, �.G/ is the smallest positive

integer k for which it is possible to color the vertices of G using k colors in such a way

that no edge has both endpoints the same color.

Any proof that �.G/ D k must involve two things, namely (1) a proper k-coloring of

G, and (2) a proof that no proper .k � 1/-coloring of G is possible. We already argued

informally that the 5-cycle has chromatic number 3, after discussing graph G of Figure

6.7. Here is a formal proof that �.C5/ D 3. First we observe that the coloring of Figure 6.7

is a proper 3-coloring, so C5 is 3-colorable. Now, assume for sake of contradiction that C5

were 2-colorable. Then there would exist a proper 2-coloring of C5. Label the vertices as

shown below.
v1

v2v5

v3v4

Without loss of generality, assume v1 is colored blue. Then v2 must be colored red, then v3

colored blue, then v4 colored red, and v5 colored blue. So this means the adjacent vertices

v1 and v5 are both colored blue, a contradiction. This proves that no proper 2-coloring of

C5 exists so therefore �.C5/ D 3.

Question 245 Find the chromatic number of the (disconnected) graph consisting of a 5-

cycle and a 4-cycle. In general, if G is disconnected, then what is the relationship between

�.G/ and the chromatic numbers of its components?

We next show �.H/ D 2, where H is the tree of Figure 6.7, by the same method. Here

is a proper 2-coloring of H :

a

b

H
a

a

ab

b
b

This shows that H is 2-colorable. Is H 1-colorable? No, because any graph with at least

one edge cannot be properly 1-colored. Therefore �.H/ D 2.

Basic properties of chromatic number

Before investigating more complicated examples we now present some properties of �.G/.

Proposition 6.3.2 The chromatic number satisfies the following properties. Let G be any

graph.
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252 6. Combinatorics on Graphs

1. �.G/ D 1 if and only if G has no edges, so that �.G/ > 2 if and only if G has at

least one edge.

2. �.G/ D 2 if and only if G has at least one edge and is bipartite.

3. �.Kn/ D n.

4. If n > 3, then �.Cn/ D
(

2 if n is even

3 if n is odd.

5. If H is a subgraph of G, then �.G/ > �.H/.

Most of these properties follow immediately from the definition of chromatic number.

Property 2 is true because we can color the vertices in one side of the bipartition red and

the vertices on the other side blue. Property 3 is true because every pair of vertices are

adjacent in Kn, so it is not possible to have two vertices with the same color. For Property

4, the case when n is even follows from Property 2. The case when n is odd follows by

generalizing the argument we used to prove that �.C5/ D 3 given earlier. Property 5 is

perhaps the most useful of those listed.

Question 246 Prove Property 5.

Another example

Find the chromatic number of the graph G shown in Figure 6.8.

v1

v6 v2

v7

v5

v3

v8 v4

v9

G

Figure 6.8. What is the chromatic number of this graph?

First we notice that K4 is a subgraph of G, so �.G/ > 4 by Properties 3 and 5. Is this

graph 4-colorable? Let’s assume a proper 4-coloring exists and try to find it.

� Since v1; v2; v3; v4 form a K4 subgraph, they must receive different colors. Without

loss of generality, assume that they are colored a; b; c; d respectively.

� v5 is adjacent to v2; v3; v4, so v5 must be colored a.

� Neither of v6; v7; v8 can be colored a because they are adjacent to v5 which is colored

a. In addition, these three vertices are mutually adjacent, so they must all receive

different colors. This means that among v6; v7; v8 each of the three colors b; c; d is

used.

� We only have v9 left to color, but its neighbors have been colored a; b; c; d . There is

no color left for v9.

Therefore G is not 4-colorable.

However, G is 5-colorable because our proof just given shows that if there is a fifth

color available then we can color v9 with that color and obtain a proper 5-coloring of G.

Therefore �.G/ D 5.
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6.3. Coloring and the chromatic polynomial 253

The chromatic polynomial

The arguments used to find the chromatic number of the graphs we’ve considered so far

have an ad hoc flavor. Can we find a chromatic number by a more systematic procedure?

Yes and no. Yes because there are such procedures that can be programmed into a computer,

and no because even the computer will have a difficult time with somewhat large graphs.

One approach involves solving a problem larger than just finding the chromatic number,

namely counting the proper k-colorings of the graph. Given a graph G, we define

p.G; k/ D number of proper k-colorings of G.

This is the chromatic polynomial of G. It is not at all clear a priori that this is indeed a

polynomial; perhaps it should be called a “chromatic function.” Anyway, we’ll prove later

that it’s a polynomial.

Since p.G; k/ counts the proper k-colorings of G, we see that �.G/ is the smallest

value of k for which p.G; k/ 6D 0. This is because if G is not k-colorable, then p.G; k/ D
0.

Question 247 Find �.G/ for a graph G having p.G; k/ D .k � 1/7 � k C 1.

Example: chromatic polynomial of P5

Consider P5, the path on five vertices:

v1
v2 v5v3 v4

To properly k-color P5, we may color v1 with any of the k colors. For each way to do so,

there are k � 1 ways to color v2, since v2 can receive any color except v1’s. For each way

to color v1 and v2, there are k � 1 ways to color v3, since v3 can receive any color except

v2’s. Similarly there are k � 1 ways to color each of v4 and v5. By the product principle

there are k.k � 1/4 proper k-colorings of P5. That is,

p.P5; k/ D k.k � 1/4 or p.P5; k/ D k5 � 4k4 C 6k3 � 4k2C k:

Either way to write the chromatic polynomial (factored form or expanded form) is fine

and each has its advantages. The factored form makes it clear that �.P5/ D 2 because

p.P5; 1/ D 0 while p.P5; 2/ > 0. The expanded form exhibits certain information about

the graph which we will explain later in this section.

Question 248 To extend Question 245, find the chromatic polynomial of the (disconnected)

graph P4 [ P5. In general, if G is disconnected, then what is the relationship between

p.G; k/ and the chromatic polynomials of its components?

Example: chromatic polynomial of another graph

Find the chromatic polynomial of the graph G shown below:

v1

v2v5

v3v4

G
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254 6. Combinatorics on Graphs

First observe that v1; v2; v5 must receive different colors since they form a K3 sub-

graph. There are k ways to color v1, then k � 1 ways to color v2, and then k � 2 ways to

color v5. To determine how many ways we can color v3 and v4, we break up the proper

colorings into two cases.

� Case 1: v3 and v5 have the same color. Since v5’s color (and therefore v3’s) is already

specified, we need only specify v4’s color. Its neighbors v3 and v5 have the same color,

so there are k � 1 ways to color v4. In this case there are k.k � 1/.k � 2/.k � 1/ D
k.k � 1/2.k � 2/ proper k-colorings of G.

� Case 2: v3 and v5 have different colors. Then there are k�2 ways to specify v3’s color

since it must be different from both v2’s and v5’s color. There are k�2 ways to specify

v4’s color (any color except v3’s or v5’s, for a total of k.k�1/.k�2/.k�2/.k�2/ D
k.k � 1/.k � 2/3 proper k-colorings in this case.

By the sum principle the chromatic polynomial of G is

p.G; k/ D k.k � 1/2.k � 2/C k.k � 1/.k � 2/3:

Therefore �.G/ D 3 because p.G; 1/ D 0 and p.G; 2/ D 0 while p.G; 3/ D 18.

Question 249 Give a complete enumeration of the 18 proper 3-colorings of G.

Chromatic polynomial of paths and complete graphs

It is easy to find the chromatic polynomial of the path Pn and the complete graph Kn

because their structure makes proper k-colorings easy to count. As you might have guessed

based on our derivation of p.P5; k/, the chromatic polynomial of Pn is k.k � 1/n�1.

Question 250 Find p.Kn; k/.

Inclusion-exclusion

Now we explore some ways to find the chromatic polynomial other than the direct counting

methods of the last two examples. First we try inclusion-exclusion. This is perhaps a natural

choice because finding a proper coloring is naturally a “pattern avoidance” problem: we

need to avoid the presence of any edge having both endpoints the same color.

Example: chromatic polynomial via inclusion-exclusion
Consider P4 with both its vertices and edges labeled:

v1
v2 v3 v4

e1
e2 e3

To use inclusion-exclusion to count the proper k-colorings of P4, first define the universe

U to be the set of all k-colorings of P4. Here it is paramount to notice that these are not

necessarily proper colorings. Define the properties

"1 WD “edge e1 has both endpoints the same color”

"2 WD “edge e2 has both endpoints the same color”

"3 WD “edge e3 has both endpoints the same color.”

Then p.P4; k/ D ND.;/ because the latter equals the number of k-colorings in which no

edge has both endpoints the same color—the proper k-colorings of P4.
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6.3. Coloring and the chromatic polynomial 255

Here are the values of the N> function:

N>.;/ D k4 N>."1"2/ D k2

N>."1/ D k3 N>."1"3/ D k2

N>."2/ D k3 N>."2"3/ D k2

N>."3/ D k3 N>."1"2"3/ D k:

For example, N>.;/ D k4 because each of the four vertices can be colored with any of the

four colors.

Question 251 Justify the other values.

By the inclusion-exclusion formula,

p.P4; k/ D k4 � .k3 C k3 C k3/C .k2 C k2 C k2/ � k

D k4 � 3k3 C 3k2 � k:

This can also be written p.P4; k/ D k.k � 1/3.

Example: another chromatic polynomial via inclusion-exclusion

Next consider the graph G shown below.

v1

v2 v3

v4

e1
e2

e3

e4

G

Define the universe U to be the set of all (not necessarily proper) k-colorings of G. Define

the properties

"i WD “edge ei has both endpoints the same color,” for i D 1; 2; 3; 4.

Then p.G; k/ D ND.;/ as before. We compute

N>.;/ D k4 N>."1"2/ D k2 N>."1"2"3/ D k

N>."1/ D k3 N>."1"3/ D k2 N>."1"2"4/ D k

N>."2/ D k3 N>."1"4/ D k2 N>."1"3"4/ D k

N>."3/ D k3 N>."2"3/ D k2 N>."2"3"4/ D k2

N>."4/ D k3 N>."2"4/ D k2 N>."1"2"3"4/ D k:

N>."3"4/ D k2

Notice that N>."1"2"3/ D k because if e1; e2; e3 all have the same color endpoints, then

all four vertices in G must be colored the same color. However, N>."2"3"4/ D k2 because

if e2; e3; e4 all have the same color endpoints then vertices v2; v3; v4 must be colored the

same color. There are k ways to specify this color, and then k ways to specify v1’s color.

Anyway, by the inclusion-exclusion formula the chromatic polynomial of G is

p.G; k/ D k4 � 4k3C 6k2 � 3k � k2 C k D k4 � 4k3 C 5k2 � 2k:

Question 252 Find p.C4; k/ using this method.
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A recurrence for the chromatic polynomial

The inclusion-exclusion approach requires one property for each edge and therefore the

computation of 2e.G/ values of the N> function. Even though each value of N> is easy to

compute, this is not a viable approach for a 50-vertex graph, even for a computer, since

250 � 1:1 quadrillion. Our next approach is recursive.

Contracting an edge

The graph operation we need to derive the recurrence relation is that of edge contraction.

Here is a picture:

v1 v2

v3 v4

e1

e2 e3 e4

G

v5

e5

e6 e7

v1v2

v3 v4

e2 e3 e4

G  e1

v5

e5

e6 e7

The original graph G is on the left and the graph G � e1, read “G contract e1,” is on the

right. To construct G � e1, we delete e1, combine the two endpoints of e1 into a single

vertex, and bring along any incident edges. Notice that G � e1 is not a simple graph because

of the presence of multiple edges.

Here are two other examples, this time involving unlabeled graphs.
e

e

G G  e H

H  e

Notice that contracting an edge that is part of a set of multiple edges results in a loop.

Question 253 If e is any edge of C9, then what is C9 � e? Answer the same question for

K6 � e.

The recurrence
The recurrence for the chromatic polynomial involves the chromatic polynomial of the

original graph as well as those of the graph obtained by deleting any one edge and the

graph obtained by contracting along that same edge.

Theorem 6.3.3 If G is a graph and e is any edge of G, then

p.G; k/ D p.G � e; k/� p.G � e; k/:

Proof: Assume G is a graph and e is any edge of G. We instead prove the equivalent

identity

p.G � e; k/ D p.G; k/C p.G � e; k/:

Let u and v be the endpoints of the edge e in G. How many proper k-colorings does G� e

have?

Answer 1: It has p.G � e; k/ proper k-colorings.

Answer 2: Divide the proper k-colorings of G � e into two types: those in which u

and v receive different colors, and those in which u and v receive the same color.
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6.3. Coloring and the chromatic polynomial 257

For any proper k-coloring of G�e in which u and v receive different colors, reinstating

the edge e results in a proper k-coloring of G. Conversely, if we take any proper k-coloring

of G and delete the edge e, the result is a proper k-coloring of G � e in which u and v

receive different colors (since u � v in G and therefore u and v received different colors).

Therefore the colorings in this case are in one-to-one correspondence with the proper k-

colorings of G, of which there are p.G; k/.

For any proper k-coloring of G � e in which u and v receive the same color, that same

coloring is a proper k-coloring of G � e and conversely. Therefore the colorings in this case

are in one-to-one correspondence with the proper k-colorings of G � e, of which there are

p.G � e; k/.

Therefore there are p.G; k/C p.G � e; k/ proper k-colorings of G � e.

When using the recurrence to compute the chromatic polynomial, if at any time we

create a graph with the contraction operation that has multiple edges between a pair of ver-

tices, then we may safely delete all but one of those edges (for each such pair of vertices).

Question 254 Explain why.

If we delete multiple edges at each stage then the contraction operation will never produce

a loop. But if do not delete multiple edges and encounter a loop at some point of the

recurrence, then we just set p.G; k/ D 0 if G is a graph containing a loop. This is because

a vertex with a loop is adjacent to itself and so the graph cannot be properly colored with

any number of colors.

Example: the chromatic polynomial of C4

To get the chromatic polynomial of C4, we select any edge and compute

p.C4; k/ D p.C4 � e; k/� p.C4 � e; k/:

Notice that C4 � e D P4, the path on four vertices, and C4 � e D C3. We observe that

p.C3; k/ D k.k � 1/.k � 2/ and therefore

p.C4; k/ D p.P4; k/ � p.C3; k/

D k.k � 1/3 � k.k � 1/.k � 2/:

Question 255 Find p.C5; k/ and p.C6; k/ using this method.

Example: the chromatic polynomial of Cn

The pattern of the last example could be continued to find p.Cn; k/ but we now show an

alternate derivation using Theorem 6.3.3 and induction. We wish to establish

p.Cn; k/ D .k � 1/n C .�1/n.k � 1/ for n > 3.

Consider the base case n D 3. We know p.C3; k/ D k.k � 1/.k � 2/. The right-hand side

of the identity equals

.k � 1/3 C .�1/3.k � 1/ D k3 � 3k2 C 3k � 1 � k C 1

D k3 � 3k2 C 2k

D k.k � 1/.k � 2/;

so it is true when n D 3.
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Now assume n > 4 and that the identity is true for Cn�1. Use Theorem 6.3.3 to write

p.Cn; k/ D p.Cn � e; k/� p.Cn � e; k/:

Since Cn � e D Pn and Cn � e D Cn�1, we can use the chromatic polynomial of Pn and

the inductive hypothesis, respectively, to write

p.Cn; k/ D k.k � 1/n�1 �
�

.k � 1/n�1 C .�1/n�1.k � 1/
�

D k.k � 1/n�1 � .k � 1/n�1 C .�1/n.k � 1/

D .k � 1/n C .�1/n.k � 1/:

Therefore the identity is true for Cn.

Theorem 6.3.4 For n > 3, p.Cn; k/ D .k � 1/n C .�1/n.k � 1/.

Properties of the chromatic polynomial

The recurrence we just derived, while cumbersome to use on arbitrary graphs, is good for

finding the chromatic polynomial of highly-structured graphs. It is also useful for proving

general properties of the chromatic polynomial using mathematical induction.

Theorem 6.3.5 If G is a graph, then the function p.G; k/ satisfies the following proper-

ties.

CP1: p.G; k/ is a polynomial of degree n.G/ having leading coefficient 1 and constant

coefficient 0.

CP2: The coefficient of kn�1 in p.G; k/ is �e.G/.

CP3: The coefficients of p.G; k/ are alternately nonnegative and nonpositive.

CP4: If e.G/ > 1, then the sum of the coefficients of p.G; k/ equals 0.

Proof: Assume G is a graph. We first prove properties CP1-CP3 by induction on e.G/, the

number of edges of G.

The base case is e.G/ D 0. A graph with zero edges consists of n.G/ isolated vertices.

The chromatic polynomial of such a graph is p.G; k/ D kn.G/. Properties CP1-CP3 are

true in this case.

Now let G be a graph having e.G/ edges, where e.G/ > 1, and assume that Properties

CP1-CP3 are true for any graph on e.G/ � 1 edges. Let e be any edge of G. By Theorem

6.3.3,

p.G; k/ D p.G � e; k/� p.G � e; k/:

Since G � e and G � e are each graphs with e.G/ � 1 edges, we apply the inductive

hypothesis to their chromatic polynomials. Let n WD n.G/ so that n.G � e/ D n and that

n.G � e/ D n� 1. Write the chromatic polynomials as

p.G � e; k/ D kn �
�

e.G/ � 1
�

kn�1 C
n�2
X

iD1

.�1/n�i ai k
i

where ai > 0 for all i 2 Œn� 2�, and

p.G � e; k/ D kn�1 �
�

e.G/� 1
�

kn�2 C
n�3
X

j D1

.�1/n�1�j bj kj
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where bj > 0 for all j 2 Œn� 3�. Then

p.G; k/ D p.G � e; k/� p.G � e; k/

D kn � e.G/kn�1 C
�

an�2 C e.G/ � 1
�

kn�2

C
n�3
X

iD1

.�1/n�i .ai C bi /k
i :

This is a polynomial, it has degree n D n.G/, leading coefficient 1, and constant coefficient

0. The coefficient of kn�1 is �e.G/. Also, the coefficients are alternately nonnegative and

nonpositive. The coefficient of kn is 1 and the coefficient of kn�1 is �e.G/ 6 0. The

coefficient of kn�2 is an�2 C e.G/ � 1 and this is nonnegative because an�2 > 0 and

e.G/ � 1 > 0. The remaining coefficients are of the form .�1/n�i .ai C bi /, and noting

that ai C bi > 0 and the presence of the factor of .�1/n�i shows that the remaining

coefficients alternate as well. Therefore p.G; k/ satisfies Properties CP1–CP3.

To prove Property CP4, assume that G has at least one edge. Then p.G; 1/ D 0 be-

cause G is not 1-colorable. Evaluating a polynomial function at 1 gives the sum of the

coefficients. Therefore the sum of the coefficients of p.G; k/ is 0.

Question 256 Can k5 � 6k4C 3k3 � 10k2C k � 3 be the chromatic polynomial of some

graph? Can k4 � 4k3 C 3k2 � k?

See Exercise 14 for a stronger version of Property CP3.

Summary

The chromatic number �.G/ of a graph G equals the minimum number of colors required

to properly color the vertices. A proper coloring of the vertices is an assignment of colors to

vertices so that adjacent vertices receive different colors. Any proof that �.G/ D k requires

demonstrating a proper k-coloring of G as well as a proof that no proper .k � 1/-coloring

exists.

Coloring is an optimization problem. We turned it into a counting problem via the chro-

matic polynomial. The chromatic number is difficult to compute in general as our efforts

in this section show. Both the inclusion-exclusion approach and the recurrence relation

approach are intractable for even moderately large graphs unless the graph is highly struc-

tured like Kn, Cn, or Pn.

Exercises

1. Print a map of the lower 48 states from a web site and then color it using four colors.

Also, include a proof of why four colors are necessary to color this map.

2. If T is a tree, then what is �.T /?

3. Prove that �.G/ 6 �.G/ C 1, where �.G/ is the maximum degree of G.

4. Determine, with proof, �.Wn/. Here, the graph Wn is the “wheel” consisting of a cycle

Cn as well as one additional vertex that is adjacent to every vertex on the cycle. (So

Wn has nC 1 vertices.)

5. Determine, with proof, the chromatic number of the Petersen graph and of the Grötsch

graph, which are shown in Figure 6.3 on page 229.
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260 6. Combinatorics on Graphs

6. Determine, with proof, the chromatic numbers of the graphs below:

G1 G2

7. Find �.G/ given that p.G; k/ D k6 � 9k5 C 31k4 � 51k3C 40k2 � 12k. Also, how

many vertices and edges does G have?

8. Define !.G/, called the clique number of G, to be the largest integer r such that G

contains Kr as a subgraph.

(a) Find an equation or inequality relating !.G/ and �.G/.

(b) Give an example of a graph G for which !.G/ D 2 and �.G/ D 3.

(c) Give an example of a graph G for which !.G/ D 2 and �.G/ D 4.

9. Determine the chromatic polynomial of each of the following graphs.

(a) the star K1;n

(b) K2;n

(c) C3 [ P4 [K5

10. Find the chromatic polynomial of the graph that consists of C5 plus one additional

vertex that is adjacent to exactly one of the vertices of C5.

11. Find p.Kn � e; k/ where e is any edge of Kn.

12. How many roots does p.G; k/ have, at least? Come up with a reasonable lower bound.

13. Relate the coefficients of p.Kn; k/ to a family of numbers studied elsewhere in this

book.

14. The coefficients of the chromatic polynomial of a graph G start 1;�e.G/. Prove that

they continue alternating positive/negative until at some point they reach 0 and stay

0. In other words, any chromatic polynomial can be written in the form p.G; k/ D
Pn

iDm.�1/n�i ai k
i where m is an integer satisfying 1 6 m 6 n and ai > 0 for all i

satisfying m 6 i 6 n.

15. In the chromatic polynomial of a graph G, prove that if km is the smallest power of k

that has a nonzero coefficient, then G has m components.

16. This exercise concerns a characterization of the chromatic polynomial of a tree.

(a) Prove by induction: if T is a tree on n vertices, then p.T; k/ D k.k � 1/n�1.

(b) Prove: if G is a graph and p.G; k/ D k.k � 1/n�1, then G is a tree.

(c) How many labeled graphs have chromatic polynomial equal to k.k � 1/50?
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Travel Notes

Kenneth Appel and Wolfgang Haken’s proof of the four-color theorem used a computer

to check a large number of cases (so-called “reducible configurations”) and therefore was

enumerative in nature. Their 1976 result settled a problem that stood for well over 100

years, but it was met with skepticism by some mathematicians who reacted negatively to

the use of a computer in a proof. The original published paper Appel & Haken (1977) is

139 pages. More recently, Robertson, Sanders, Seymour & Thomas (1996) announced a

new proof of the four-color theorem that uses the same general idea of Appel & Haken but

avoids some of the technicalities they encountered.

Chromatic polynomials were introduced by Birkhoff in 1912 as a possible approach

to proving the four-color theorem. That approach did not pan out, but they were further

explored in Birkhoff & Lewis (1946).

6.4 Ramsey theory

To understand how non-mathematicians sometimes view the work of mathematicians, look

no farther than this letter to Ann Landers that appeared in The Washington Post on June

22, 1993.

DEAR ANN LANDERS: I am sure many members of Congress read your column. I hope they

will see this, because it’s the best way I can think of to get their attention.

I am enclosing an article from the Rochester Democrat & Chronicle so you will know I am

not making this up.

Two professors, one from Rochester, the other from Australia, have worked for three years,

used 110 computers and communicated 10,000 miles by electronic mail, and finally have

learned the answer to a question that has baffled scientists for 63 years. The question is this: If

you are having a party and want to invite at least four people who know each other and five who

don’t, how many people should you invite? The answer is 25. Mathematicians and scientists in

countries worldwide have sent messages of congratulations.

I don’t want to take anything away from this spectacular achievement, but it seems to me

that the time and money spent on this project could have been better used had they put it toward

finding ways to get food to the millions of starving children in war-torn countries around the

world.—B.V.B., Rochester, N.Y.

Unfortunately, the letter-writer stated the question incorrectly in their third paragraph.

The correct version is: If you are having a party and want to guarantee that no matter who

you invite there will either be four people who all know each other or five people who all

don’t know each other, then what is the least number of people you must invite?

But the bigger issue as implied by the letter-writer’s sarcasm is, Should we care? Here

are two reasons to say “yes,” both involving the 17th century mathematician Pierre de

Fermat. First, a particular piece of theory may not prove its worth in applications until long

after its discovery. Exhibit A in support of this is Fermat’s little theorem of 1640, which

Rivest, Shamir, & Adelman famously employed in 1978 to devise a method for secure

digital communication now known as RSA encryption. Fermat could not have anticipated

this application.

Second, the journey of solving a difficult mathematical problem is often more important

than the end result. Exhibit B is Fermat’s last theorem, the truth of which has not yet led

to any earth-shaking applications. But the 350-year journey from first statement by Fermat
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262 6. Combinatorics on Graphs

to final proof by Andrew Wiles in 1995 produced so much deep, powerful, and applicable

mathematics that these by-products have eclipsed the theorem itself.

In this section we study the sort of problems to which the Ann Landers letter-writer

referred. This is the field of graph Ramsey theory, a notoriously difficult area of combina-

torics where the questions are easy to explain but the answers are hard to find.

Party problems, edge coloring, and Ramsey problems

The following question about people at a party is known as the

.3; 3/ Party problem: What is the fewest number of people you can invite to a party to

guarantee that there are either three mutual acquaintances or three mutual strangers?

“Three mutual acquaintances” means that any two people in that group of three have met,

and “three mutual strangers” means that no two people in that group of three have met.

Now here is a question about coloring the edges of a graph.

.3; 3/ Ramsey problem: What is the smallest value of n so that every red-blue col-

oring of the edges of Kn contains either an all-red K3 subgraph or an all-blue K3

subgraph?

A “red-blue coloring of the edges” means that every edge is painted either red or blue.

These two problems are equivalent: identify the vertices of Kn with the invited guests

and then connect each pair of guests with either a red or blue edge according to whether

they are acquainted or not acquainted, respectively. We shall work with edge coloring from

now on. Also, we’ll use the abbreviations “red-blue coloring of Kn” and “red K3” with the

understanding that we’re referring to coloring the edges.

The problem spoken of at the beginning of this section is the

.4; 5/ Ramsey problem: What is the smallest value of n so that every red-blue color-

ing of Kn contains either a red K4 or a blue K5?

As mentioned in the letter, the answer to this problem is 25. This means two things: (1)

every possible red-blue coloring of the edges of K25 will produce either an all-red K4 or

an all-blue K5 or perhaps both; and (2), there is an example of a red-blue coloring of the

edges of K24 that contains neither an all-red K4 nor an all-blue K5.

The graph coloring problems are called Ramsey problems because they fit into the

more general framework of a theorem proved by Frank Ramsey in 1930. Loosely speaking

Ramsey’s theorem says that

� in a large structure

(in the .4; 5/ Ramsey problem this structure is K25)

� that is constructed randomly

(each edge of K25 is colored red or blue in any manner),

� there is a non-random substructure

(an all-red K4 or an all-blue K5).

T. S. Motzkin’s famous quote—“Complete disorder is impossible”—is often used to de-

scribe Ramsey theory.
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6.4. Ramsey theory 263

The easiest Ramsey problem

The .3; 3/ Ramsey problem asks for the smallest value of n guaranteeing that every red-

blue coloring of Kn contains either a red K3 or a blue K3. The answer is six. This requires

showing two things.

1. Every red-blue coloring of K6 contains a red K3 or a blue K3.

2. There exists an example of a red-blue coloring of K5 that contains neither a red K3

nor a blue K3.

To prove #1, suppose the vertex set is Œ6�. The first step of the proof is the most impor-

tant. Of the five edges incident to vertex 1, there must be three of the same color. Without

loss of generality, say that edges 12, 14, and 15 are red:

1

2

3

4

5

6

red
blue

Now examine the edges among vertices 2, 4, and 5. If any one of them is red, we have

found our red K3. For example, if edge 25 is red then edges 12, 15, and 25 form a red K3.

Otherwise all three of them are blue and therefore edges 24, 25, and 45 form a blue K3.

This exhausts the cases and completes the proof.

To prove #2, we need to exhibit a red-blue coloring of K5 having neither a red K3 nor

a blue K3.

Question 257 Give an example of such a coloring of K5.

Ramsey arrow notation

Let R.a; b/ denote the answer to the

.a; b/ Ramsey problem: What is the smallest value of n so that every red-blue col-

oring of Kn contains either a red Ka or a blue Kb?

We just showed that R.3; 3/ D 6.

Question 258 Explain why R.a; b/ D R.b; a/, always.

The numbers R.a; b/ have been the subject of intense study yet very few of them are

known. Ramsey’s theorem shows only that the numbers R.a; b/ are well-defined. It does

not give any insight into how to determine their value. In this section we will find a few of

them. At the end, we give all known values of R.a; b/ as well as the best known upper and

lower bounds on some of the other numbers.

We write 6 ! .3; 3/ to indicate that every red-blue coloring of K6 has a red K3 or a

blue K3. We also write 5 6! .3; 3/ to indicate that not every red-blue coloring of K5 has a

red K3 or a blue K3. In general, n! .a; b/ means that every red-blue coloring of Kn has

a red Ka or a blue Kb . This is sometimes expressed as, “n has the .a; b/ Ramsey property.”

Question 259 Suppose n! .a; b/. Explain why p ! .a; b/ for all p > n.

Therefore, R.a; b/ is the least positive integer n for which n ! .a; b/. Therefore,

R.a; b/ D n if and only if n! .a; b/ and n � 1 6! .a; b/.
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red
blue

Case 2: Six blue edges incident
to vertex 1.

Case 1: Four red edges incident
to vertex 1.

7

1

2

4

3

5

6

1

2

34

5

Use 6 (3,3) here®
Use 4 (2,4) here®

Figure 6.9. The two cases in the proof that 10 ! .3; 4/.

Trivial Ramsey problems

The Ramsey numbers R.2; b/ are easy to determine. We seek the smallest value of n for

which every red-blue coloring of Kn contains either a red K2 or a blue Kb . Note that a red

K2 is just a single red edge. Obviously b ! .2; b/ because any red-blue coloring of Kb

either contains only blue edges or else contains at least one red edge.

Question 260 Show that b � 1 6! .2; b/. That is, give an example of a red-blue coloring

of Kb�1 that contains neither a red K2 nor a blue Kb .

Therefore R.2; b/ D b for all b > 2.

The next easiest Ramsey problem

Now that we know R.3; 3/ D 6, we next tackle R.3; 4/. To illustrate both the difficulty of

finding Ramsey numbers as well as the interesting aspects of the journey involved in doing

so, we will first determine an upper bound, then a lower bound, and then finally a better

upper bound.

Proof that 10 ! .3; 4/

We prove an upper bound R.3; 4/ 6 10 by proving 10! .3; 4/. To show that any red-blue

coloring of K10 has either a red K3 or a blue K4, we see if we can modify the argument

used to prove 6! .3; 3/. Consider any coloring of K10 and examine the edges incident to

vertex 1. We consider two cases. See Figure 6.9 for an illustration.

Case 1: There are at least four red edges incident to vertex 1. Without loss of gen-

erality, assume red edges join vertex 1 to vertices 2-5. Look at the K4 subgraph induced by

vertices 2-5. Since 4! .2; 4/, this subgraph contains a red K2 or a blue K4. If it contains

a blue K4, then we have found a blue K4 in our larger K10. Else it contains a red K2,

so that those two vertices and vertex 1 form a red K3 in the larger graph K10. Therefore

10! .3; 4/ in this case.

Case 2: There are at most three red edges, and therefore at least six blue edges,

incident to vertex 1. Without loss of generality, assume blue edges join vertex 1 to vertices

2-7. Look at the K6 subgraph induced by vertices 2-7. Since 6 ! .3; 3/, this subgraph

contains a red K3 or a blue K3. If it contains a red K3, then we have found a red K3 in our
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6.4. Ramsey theory 265

larger graph K10. Else it contains a blue K3, so that those three vertices and vertex 1 form

a blue K4 in the larger graph K10. Therefore 10! .3; 4/ in this case as well.

These two cases are exhaustive, so 10! .3; 4/ and therefore R.3; 4/ 6 10.

Proof that 8 6! .3; 4/

To show 8 6! .3; 4/ we must find a red-blue coloring of K8 having neither a red K3 nor a

blue K4. Here is such a graph:

red
blue

5

6 4

3

2

1

8

7

And the winner is...

At this point we know 9 6 R.3; 4/ 6 10. So does 9! .3; 4/ or does 9 6! .3; 4/?

Let’s see if we can improve upon the proof that 10 ! .3; 4/. Consider any red-blue

coloring of K9. Ignore the blue edges for the moment and consider the 9-vertex graph

involving just the red edges. Since this graph has an odd number of vertices, there exists a

vertex of even degree. Without loss of generality let’s assume that vertex 1 is such a vertex,

so that it has an even number of red edges incident to it. Now go back to the original

red-blue coloring of K9. Each vertex has degree 8, not 9, so we modify Case 1 as follows.

Case 1: There are at least three red edges incident to vertex 1. But vertex 1 has an

even number of red edges incident to it, so there must be at least four red edges incident to

vertex 1. This case now proceeds as before.

Case 2: There are at most two red edges, and therefore at least six blue edges,

incident to vertex 1. This case is identical to Case 2 of the previous proof.

In each case the conclusion is 9 ! .3; 4/. We have now determined the value of

R.3; 4/.

Theorem 6.4.1 R.3; 4/ D 9.

Two upper bounds

Why did we show the proof that 10! .3; 4/ when in fact we know that 9! .3; 4/? Upon

careful inspection, the proof that 10! .3; 4/ actually proves that

R.3; 4/ 6 R.2; 4/CR.3; 3/:

The same argument works to give an upper bound on any Ramsey number R.a; b/.

Theorem 6.4.2 If a; b > 3, then R.a; b/ 6 R.a � 1; b/CR.a; b � 1/.

Proof: Assume a; b > 3. Define n WD R.a � 1; b/C R.a; b � 1/. We prove the theorem

by showing that n! .a; b/.
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Consider any red-blue coloring of Kn and look at the edges incident with vertex 1.

There are n � 1 D R.a � 1; b/CR.a; b � 1/ � 1 such edges. We consider two cases.

Case 1: There are at least R.a � 1; b/ red edges incident to vertex 1. Consider the

subgraph induced by the endpoints of any R.a � 1; b/ such edges. It contains either a red

Ka�1 or a blue Kb . If it contains a blue Kb , then the Kn contains a blue Kb . If it contains

a red Ka�1, then those a � 1 vertices plus vertex 1 form a red Ka. Therefore n ! .a; b/

in this case.

Case 2: There are at least R.a; b � 1/ blue edges incident to vertex 1. See the

question after the proof.

In either case n! .a; b/. Therefore R.a; b/ 6 n D R.a � 1; b/CR.a; b � 1/.

Question 261 Why must there be either R.a � 1; b/ red edges or R.a; b � 1/ blue edges

incident to vertex 1? Also, provide the details of Case 2.

We have not yet proved that the Ramsey numbers R.a; b/ for a; b > 2 are well-defined

(i.e., exist and are finite), but we can do so with the aid of Theorem 6.4.2. We prove by

induction on a C b. For the base case, since R.2; b/ D R.b; 2/ D b for all b > 2 these

numbers are well-defined. Now assume a; b > 3 and that R.p; q/ is well-defined for

whenever pC q < aC b. This implies that R.a � 1; b/ and R.a; b � 1/ are well-defined.

The argument used to prove Theorem 6.4.2 shows that R.a; b/ 6 R.a�1; b/CR.a; b�1/.

Therefore R.a; b/ has a well-defined upper bound, and so R.a; b/, being the least positive

integer n for which n! .a; b/, is well-defined.

The bound of the following theorem can also be proved using Theorem 6.4.2 and in-

duction (see Exercise 4).

Theorem 6.4.3 If a; b > 2, then R.a; b/ 6

 

aC b � 2

a � 1

!

.

Question 262 Find upper bounds on R.a; b/ for a; b D 3; 4; 5; 6 using Theorems 6.4.2

and 6.4.3.

A lower bound

We next turn our attention to a lower bound on R.a; a/. Let’s first see how this works in

the case of R.5; 5/. The general case is no more difficult.

What condition on n would allow us to conclude that R.5; 5/ > n? We would need to

show that there is a red-blue coloring of Kn with neither a red K5 nor a blue K5. Let’s try

to count the complement—the colorings of Kn having either a red K5 or a blue K5. If S is

any 5-subset of vertices of Kn, let AS be the set of red-blue colorings of Kn in which the

subgraph induced by S is all-red or all-blue. The size of this set is

jAS j D 2 � 2.n
2/�.5

2/

because there are two ways to color the edges in the subgraph induced by S (all red or all

blue), and then 2.n
2/�.5

2/ ways to color the remaining
�
n
2

�

�
�

5
2

�

edges of Kn.

The number of colorings of Kn having a red K5 or a blue K5 is then the size of the

union of the AS

[# colorings with red K5 or blue K5] D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

[

S WjS jD5

AS

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

:
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An easy upper bound on the union is the sum of the sizes of the sets:

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

[

S WjS jD5

AS

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

6

X

S WjS jD5

jAS j:

Use the formula for jAS j to write

X

S WjS jD5

jAS j D
X

S WjS jD5

2 � 2.n
2/�.5

2/ D
 

n

5

!

� 2 � 2.n
2/�.5

2/:

We have shown that

[# colorings with red K5 or blue K5] 6

 

n

5

!

� 2 � 2.n
2/�.5

2/:

Now comes the key observation: If the number on the right is less than the total number of

red-blue colorings of Kn, then there will be a coloring containing neither a red K5 nor a

blue K5. The total number of red-blue colorings of Kn is 2.n
2/, and

 

n

5

!

� 2 � 2.n
2/�.5

2/ < 2.n
2/

is true if and only if
 

n

5

!

< 2.5
2/�1:

This inequality is the condition we sought at the outset: If n satisfies
�

n
5

�

< 2.5
2/�1, then

R.5; 5/ > n.

Theorem 6.4.4 If n is an integer satisfying

 

n

a

!

< 2.a
2/�1

then R.a; a/ > n.

Question 263 Prove the theorem by generalizing the argument for R.5; 5/ > n.

The lower bound provided by Theorem 6.4.4 is not very tight in most cases.

Question 264 Find a lower bound on R.a; a/ for a D 3; 4; 5; 6 using the theorem.

How hard are the Ramsey problems?

The famous Hungarian mathematician Paul Erdős (1913–1996) once made this analogy

about the relative difficulty of finding R.5; 5/ and R.6; 6/. Suppose an all-powerful and

invincible alien comes to Earth and asks a single question. Answer correctly and the alien

will spare the planet. Answer incorrectly and it will instantly destroy humanity. If the alien

asks for the value of R.5; 5/, then according to Erdős our best strategy is to get every

mathematician to drop what they’re doing and work on finding the answer. If instead the
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a# b! 3 4 5 6 7 8 9

3 6 9 14 18 23 28 36

4 18 25 35;41 49;61 56;84 73;115

5 43;49 58;87 80;143 101;216 125;316

6 102;165 113;298 127;495 169;780

7 205;540 216;1031 233;1713

8 282;1870 317;3583

9 565;6588

Table 6.1. Best known bounds on Ramsey numbers R.a; b/ for 3 6 a 6 b 6 9.

alien asks for R.6; 6/, then Erdős says our best strategy is to try to figure out how to destroy

the alien.

Table 6.1 shows the best known information for the nontrivial Ramsey numbers R.a; b/

satisfying 3 6 a 6 b 6 9. Only nine values of R.a; b/ are known with certainty; in all

other cases the table shows the best known lower and upper bounds.

Question 265 Compare your upper and lower bounds found in Questions 262 and 264

with those of Table 6.1.

The most recent discovery was R.4; 5/ D 25, which prompted the letter shown at the

beginning of this section. Here is the timeline of the quest to find R.4; 5/.

� 1955: First upper bound R.4; 5/ 6 31.

� 1965: First lower bound and improved upper bound 25 6 R.4; 5/ 6 30.

� 1968: Improved upper bound R.4; 5/ 6 29.

� 1971: Improved upper bound R.4; 5/ 6 28.

� 1991: Improved upper bound R.4; 5/ 6 27.

� 1992: Improved upper bound R.4; 5/ 6 26.

� 1993: Improved upper bound R.4; 5/ 6 25 and proof that R.4; 5/ D 25.

Given the time and difficulty involved in each step, perhaps determining even R.4; 7/ is

insurmountable given the current bounds 49 6 R.4; 7/ 6 61.

Other Ramsey numbers

One generalization of the Ramsey number R.a; b/ involves adding more colors. Define

R.a; b; c/ to be the least positive integer n such that any red-blue-green coloring of Kn has

either a red Ka or a blue Kb or a green Kc . In this case there is only one nontrivial number

known: R.3; 3; 3/ D 17. In the case of four colors, none of the numbers R.a; b; c; d / are

known.

Question 266 Determine R.2; 3; 3/. What can you say about R.2; b; c/?

Another generalization of R.a; b/ involves looking for monochromatic subgraphs other

than complete graphs. For any graphs G and H , define R.G; H/ to be least positive integer

n such that any red-blue coloring of Kn either contains a red G or a blue H as a subgraph.

For example, R.C4; K5 � e/ is the least positive integer n such that any red-blue coloring

of Kn contains either a red C4 (i.e., a red 4-cycle) or a blue K5�e (a blue K5 with an edge

deleted). In this new notation, R.a; b/ is R.Ka; Kb/. See the Exercises.
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Summary

The Ramsey number R.a; b/ equals the least positive integer n for which every red-blue

coloring of the edges of Kn contains either an all-red Ka or an all-blue Kb . Ramsey num-

bers are difficult to compute. Only nine nontrivial Ramsey numbers are known: R.3; b/

for b D 3; 4; : : : ; 9 as well as R.4; 4/ and R.4; 5/. Work on determining R.4; 5/ spanned

almost 40 years and required a great deal of computation in addition to mathematical inge-

nuity.

Exercises

1. True or false?

(a) n! .a; b/ if and only if R.a; b/ 6 n.

(b) n 6! .a; b/ if and only if R.a; b/ > n.

(c) There is a red-blue coloring of K300 with neither a red K6 nor a blue K7.

(d) One way to determine an upper bound on R.a; b/ is to exhibit a coloring of a

complete graph that has either a red Ka or a blue Kb .

2. Prove the following version of Theorem 6.4.2 that gives a tighter bound in a special

case: if a; b > 3 and R.a � 1; b/ and R.a; b � 1/ are both even, then R.a; b/ 6

R.a � 1; b/CR.a; b � 1/� 1.

3. Consider any five points in the plane such that no three lie on the same line. Prove that

there exist four points that form the vertices of a convex quadrilateral.

4. Prove Theorem 6.4.3 by induction on a C b. (Alternatively, you could prove using

double induction on a and b.)

5. Find a red-blue coloring of K13 containing neither a red K3 nor a blue K5.

6. Determine the following generalized Ramsey numbers.

(a) R.K3 � e; Kb/ for all b > 3

(b) R.K1;3; K1;4/

(c) R.C4; C4/

(d) R.K3; C4/

7. Give a direct, combinatorial proof of Theorem 6.4.3.

Travel Notes

Graham, Rothschild & Spencer (1980) is an excellent survey of Ramsey theory and also

contains some interesting history. Frank Ramsey expressed his original theorem in the

context of sets, not graphs, and he was interested in a problem in mathematical logic.

Nonetheless his paper Ramsey (1930) has sparked a great deal of research in combinatorics

and graph theory. Ramsey worked in philosophy, mathematical logic, and economics and

made important contributions to each field before his death at the age of only 27.

The two mathematicians mentioned in the letter at the beginning of this section are

Brendan McKay and Stanisław Radziszowski, and their result appeared in McKay &

Radziszowski (1995). Radziszowski also maintains an article called “Small Ramsey num-

bers,” published in the Electronic Journal of Combinatorics, that contains the best known

bounds on all sorts of Ramsey numbers including those shown in Table 6.1. The latest

update is August 2006.
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C H A P T E R 7

Designs and Codes

In this chapter we visit two application areas of combinatorics that at first appear unre-

lated. One area involves error-correcting codes. An error-correcting code provides a way

to transmit a message so that the original message can be recovered even when some errors

are introduced in transmission. You need only think of today’s technology (cell phones,

DVD players, spacecraft) as well as the ways in which transmission problems occur (com-

munications satellite or cell phone tower problems, bumping the player or scratching the

disc, various kinds of interference) to recognize the importance of this application.

The other area involves combinatorial designs. One of the first needs for designs arose

in constructing statistical experiments, especially in agriculture and medicine. Classical

examples include studies to test the efficacy of fertilizer-seed variety combinations, drugs,

or even automotive tires. In order to make valid conclusions, the experimenter must con-

trol non-experimental effects that can confound the outcome. For example, each possible

fertilizer-seed combination should be tested in a variety of soils and climates so that the

success of a particular combination is not dependent on either of those factors. Combina-

torial designs provide prescribed experimental layouts that accomplish this objective.

Since those initial applications of combinatorial designs, they have proved their worth

in a host of other settings. These include tournament scheduling and, as it turns out, error-

correcting codes.

7.1 Construction methods for designs

We begin our study of combinatorial designs by trying to construct a few specific designs.

After experiencing some of the issues therein, we derive a few properties and then explore

more methods of construction.

The .7; 7; 3; 3; 1/ design

A recreational softball league commissioner needs to schedule games for a seven-team

round-robin tournament. In such a tournament, each team plays each other team exactly

once. The commissioner wants to send three teams to the field each day. While two teams

play, the third supplies the umpires, and then they rotate so that a total of three games are

played. How might we construct such a schedule?

Each team needs to play a total of six games. On any day a team comes to the field,

271
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they play two games. Therefore, in an ideal schedule, each team would come to the field

on 6=2 D 3 days. Also notice that a total of
�

7
2

�

D 21 games must be played. In an ideal

schedule, this would take 21=3 D 7 days to accomplish because three games are played

per day.

Let’s try to make such a schedule. Label the teams 1 through 7 and attempt to group

them in “blocks” of three teams that meet the requirements. Let’s send teams 1-3 to the

field on day 1. Team 1 also needs to play teams 4-7, so start by defining the three blocks

B1 D f1; 2; 3g B2 D f1; 4; 5g B3 D f1; 6; 7g:

This ensures team 1 plays each other team once.

Team 2 has already played teams 1 and 3 and still needs to play teams 4-7. We won’t

include the block f2; 4; 5g because teams 4 and 5 already play in B2. (Each pair of teams

must play exactly once.) Thus we choose B4 D f2; 4; 6g. Team 2 still needs to play teams

5 and 7, so let’s try B5 D f2; 5; 7g. This completes team 2’s required games. Noting that

team 3 still needs to play teams 4-7, we set B6 D f3; 4; 7g and B7 D f3; 5; 6g.
Question 267 If you instead choose B4 D f2; 4; 7g, what would the rest of the blocks be?

The whole schedule, or design, is:

i 1 2 3 4 5 6 7

Bi 1,2,3 1,4,5 1,6,7 2,4,6 2,5,7 3,4,7 3,5,6

Each of the 21 pairs of teams indeed plays exactly once. For example, teams 3 and 6

appear together in B7 and in no other blocks. Notice also that each team comes to the field

on exactly three days.

This collection of seven blocks is known as a balanced incomplete block design. It

contains the structure that the commissioner desired: each team appears in exactly three

blocks, each block contains exactly three teams, and each pair of teams appears together in

exactly one block. It is known as a .7; 7; 3; 3; 1/ design for reasons we’ll explain shortly.

No such “ideal” design exists if instead there are six teams. The tournament would

involve
�

6
2

�

D 15 games and so an ideal schedule would involve 15=3 D 5 days. Starting

with B1 D f1; 2; 3g and B2 D f1; 4; 5g, there is no way to construct a block B3 D f1; ‹; 6g
that avoids team 1 playing a team it has already played. The commissioner should either be

prepared to send teams to the field for the sole purpose of umpiring or else should explore

another way to structure the tournament.

Question 268 Does such a design exist if there are eight teams? Either construct one or

explain why one doesn’t exist.

Balanced incomplete block designs

A combinatorial design or simply a design is a pair .V;B/ where V is a finite set of

varieties and B is a multiset consisting of nonempty subsets of V . The subsets in B are the

blocks of the design. The design we just constructed has

V D f1; 2; 3; 4; 5; 6; 7g

B D
n

f1; 2; 3g; f1; 4; 5g; f1; 6; 7g; f2; 4; 6g; f2; 5; 7g; f3; 4; 7g; f3; 5; 6g
o

:
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In this case there are no repeated blocks, so B is an ordinary set. Although we labeled

the blocks B1; : : : ; B7 when we constructed this design, we did so for ease of reference.

Blocks in a design are unlabeled.

A .b; v; r; k; �/ design has b blocks and v varieties such that each variety appears in

exactly r blocks, each block contains exactly k varieties, and each pair of distinct varieties

appears together in exactly � blocks. Such designs are either complete or incomplete ac-

cording to whether k D v or k < v, respectively. A balanced incomplete block design

(BIBD) is a .b; v; r; k; �/ design with k < v. The tournament schedule constructed above

is a .7; 7; 3; 3; 1/ BIBD.

More generally, any design in which each variety appears in exactly r blocks is r -

regular. Any design in which each block has size k is k-uniform. Any design in which

each pair of distinct varieties appears in exactly � blocks is �-balanced. Therefore, a BIBD

is an incomplete, regular, uniform, balanced design. A design with

V D f1; 2; 3; 4g

B D
n

f1; 2g; f1; 2g; f3; 4g; f3; 4g
o

is not a BIBD because although it is incomplete, 2-regular, and 2-uniform, it is not balanced

because varieties 1 and 2 appear together in two blocks while varieties 1 and 3 don’t appear

together in any blocks. Exercise 8 asks you to prove that any incomplete, uniform, and

balanced design is necessarily regular and hence a BIBD.

Question 269 Construct an example of a design with V D f1; 2; 3g that is regular and

balanced but not uniform.

In a complete design each block consists of the entire set V of varieties. If such a design

has b blocks, then the remaining parameters are easy to compute.

Question 270 Determine the remaining parameters of a complete .b; v; ‹; ‹; ‹/ design.

The interesting work to be done on .b; v; r; k; �/ designs involves those whose parameters

satisfy 1 < k < v, because complete designs (having k D v) and designs with k D 1 are

trivial.

Constructing a .10; 6; 5; 3; 2/ design

Pharmaceutical researchers wish to test six different pain relievers on chronic migraine

sufferers. They recruit 10 subjects for their study. Ideally they would test all six drugs on

each subject but this is not possible for both medical and practical reasons. Instead, they

administer three different drugs to each subject and insist on testing every possible pair of

drugs on two different subjects. If one drug is truly more effective than another, then that

should be reflected in the independent experiences of two subjects.

The drugs comprise the v D 6 varieties. Each block corresponds to a group of three

drugs that will be administered to a subject, so k D 3 and b D 10. In addition, each pair

of drugs must appear together in � D 2 blocks. The experiment calls for a .10; 6; r; 3; 2/

design. It turns out that each variety must appear in exactly five blocks, so r D 5 and we

need to construct a .10; 6; 5; 3; 2/ design. (Shortly, we’ll see why r D 5.)

Set V WD Œ6�. Variety 1 must appear in r D 5 blocks so we place it in B1 through B5.

Varieties 1 and 2 must appear together in � D 2 blocks, so we place variety 2 in B1 and
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B2. Variety 2 must also appear in five blocks total, so we place it in B6 through B8. Any

other variety can go in B1, so we choose to place variety 3 there. Our partially completed

design is:

i 1 2 3 4 5 6 7 8 9 10

Bi 1,2,3 1,2,? 1,?,? 1,?,? 1,?,? 2,?,? 2,?,? 2,?,? ?,?,? ?,?,?

For our next move, varieties 1 and 3 need to appear together in two blocks. They already

appear together in B1 so we can place variety 3 in B3.

Question 271 Can the design be completed if instead we chose B1 D B2 D f1; 2; 3g?
Support your answer. (Repeated blocks are allowed in a design, so if it cannot be completed

then it will not be for that reason.)

Varieties 2 and 3 also need to appear in the same block twice, so we place variety 3 in B6.

Variety 3 has now appeared with varieties 1 and 2 the required number of times. It needs

to appear five times in all, so we must place it in B9 and B10. We now have:

i 1 2 3 4 5 6 7 8 9 10

Bi 1,2,3 1,2,? 1,3,? 1,?,? 1,?,? 2,3,? 2,?,? 2,?,? 3,?,? 3,?,?

Among blocks B1 through B5, we still need to place varieties 4-6 so that each of these

varieties appears with variety 1 exactly two times. One way to do so is:

i 1 2 3 4 5 6 7 8 9 10

Bi 1,2,3 1,2,4 1,3,5 1,4,6 1,5,6 2,3,? 2,?,? 2,?,? 3,?,? 3,?,?

This completes the considerations involving variety 1. Among B6 through B8, which are

the remaining blocks that contain variety 2, we still need the following pairs to appear:

pair 1,2 2,3 2,4 2,5 2,6

# blocks in which pair still needs to appear 0 0 1 2 2

Setting B6 D f2; 3; 4g forces B7 D B8 D f2; 5; 6gwhich then causes varieties 5 and 6 to

appear together three times in the design. We then try B6 D f2; 3; 5g but also find that we

cannot complete the design.

Question 272 Explain why at this point we cannot choose B6 D f2; 3; 5g.

Setting B6 D f2; 3; 6g forces B7 D f2; 4; 5g and B8 D f2; 5; 6g. We are almost done:

i 1 2 3 4 5 6 7 8 9 10

Bi 1,2,3 1,2,4 1,3,5 1,4,6 1,5,6 2,3,6 2,4,5 2,5,6 3,?,? 3,?,?

Variety 3 has not yet appeared in the same block as variety 4, so we must put 4 in each of

the last two blocks to get:

i 1 2 3 4 5 6 7 8 9 10

Bi 1,2,3 1,2,4 1,3,5 1,4,6 1,5,6 2,3,6 2,4,5 2,5,6 3,4,5 3,4,6

You should verify that this is indeed a .10; 6; 5; 3; 2/ design.
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The basic necessary conditions

The somewhat ad hoc methods we used to construct the .7; 7; 3; 3; 1/ and .10; 6; 5; 3; 2/de-

signs become cumbersome if we wish to construct larger designs. Also, if a design doesn’t

exist, proving so using these construction methods takes great care.

Before we return to design construction methods, we derive two fundamental necessary

conditions for the existence of a .b; v; r; k; �/ design.

Theorem 7.1.1 If a .b; v; r; k; �/ design exists, then bk D vr and r.k � 1/ D �.v � 1/.

Combinatorial proof: Consider any .b; v; r; k; �/ design.

To prove bk D vr we ask, How many 2-lists .B; x/ are possible, where B is a block

of the design and x is a variety appearing in that block?

Answer 1: Choose a block in b ways. Every block has size k, so there are k ways to

select a variety in that block. By the product principle there are bk such 2-lists.

Answer 2: First choose a variety in v ways. Every variety appears in r blocks, so there

are r ways to select a block containing that variety. There are vr such 2-lists.

To prove r.k�1/ D �.v�1/ we first fix any variety y and then ask, How many 2-lists

.B; x/ are possible, where x; y 2 B and x 6D y?

Answer 1: Since variety y appears in exactly r blocks, there are r ways to choose the

block B . That block contains k�1 varieties other than y, so there are k�1 ways to choose

the variety x. There are r.k � 1/ such 2-lists.

Answer 2: There are v � 1 ways to choose a variety x that is different from y. These

two varieties appear together in exactly � blocks, so there are � ways to choose the block

B . There are �.v � 1/ such 2-lists.

Question 273 All of the BIBDs we have encountered so far have r > �. Use the theorem

to prove that this is true in general.

If we apply the theorem to the .10; 6; r; 3; 2/ design of the previous example, we can

use the condition bk D vr to write 30 D 6r , which implies r D 5. Generally, the theorem

shows that the values of any three of the parameters in a .b; v; r; k; �/ design determine

the values of the other two. For that reason, a .b; v; r; k; �/ design is often simply called a

.v; k; �/ design. We will use both notations interchangeably.

In addition to determining missing parameters, we can also use the theorem to prove

that certain designs don’t exist. Some examples follow.

Example: do these designs exist?

What conclusion can you draw from Theorem 7.1.1 about the existence of designs with the

following parameters?

(a) .111; 111; 11; 11; 1/

H) A .111; 111; 11; 11; 1/design indeed satisfies bk D vr and r.k�1/ D �.v�1/.

The theorem doesn’t rule out the existence of such a design, but neither does it help

us construct one.

(b) .4; 4; 3; 3; 2/

H) A .4; 4; 3; 3; 2/ design also satisfies bk D vr and r.k � 1/ D �.v � 1/, so again

the theorem does not rule out its existence. In fact, such a design is easy to construct.

Set V D Œ4� and let B consist of the 3-subsets of V .
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Question 274 Construct a design with .v; k; �/ D .5; 3; 3/ by using a similar con-

struction technique.

(c) .v; k; �/ D .11; 3; 2/

H) If a .b; 11; r; 3; 2/ design were to exist, then it would satisfy 3b D 11r and

2r D 20. This means r D 10, which implies 3b D 110. But then b is not an integer,

so no such design exists.

(d) a softball schedule as described at the beginning of this section, but involving v teams

H) This reduces to determining the values of v for which a .b; v; r; 3; 1/ design

exists. We need 2r D v � 1 or r D .v � 1/=2. We also need 3b D v.v � 1/=2 or

b D v.v � 1/=6. Therefore, if such a design exists involving v teams, it must be the

case that v is odd and v.v � 1/ is divisible by 6. The theorem gives no insight into

whether these conditions are sufficient.

Two basic construction methods

The equations of Theorem 7.1.1 are necessary conditions for the existence of a design. Un-

fortunately they are not sufficient, and part (a) of the last example is a case in point. In 1988,

a group of researchers used a CRAY supercomputer to determine that no .111; 111; 11;

11; 1/ design exists. See Lam (1991) for their story. On the other hand, the conditions of

the theorem may also be sufficient, as they are with part (d) of the example. A .b; v; r; 3; 1/

design is called a Steiner triple system. The name has stuck despite the fact that Kirk-

man (1847) provided the exact conditions for their existence earlier than Steiner who in

1853, unaware of Kirkman’s work, merely conjectured that the necessary conditions were

sufficient. We consider Steiner triple systems in Section 7.3.

We devote the remainder of this section to three construction methods. In the next two

sections we return to the study of necessary conditions.

Method 1: repeat blocks

From a .b; v; r; k; �/ design, create a new design by writing each block t times. The result is

a .tb; v; t r; k; t�/ design. For example, we know that a .21; 7; 9; 3; 3/design exists because

we can simply include three copies of each block of the .7; 7; 3; 3; 1/ design.

Question 275 Explain how to construct a .170; 6; 85; 3; 34/ design.

Method 2: find the complementary design

A natural way to build a new design from an existing one is to take the complement of

each block relative to the set of varieties. This is called the complementary design. If D is

a design, then Dc denotes its complementary design.

Here is the .7; 7; 3; 3; 1/ design and its complementary design:

i 1 2 3 4 5 6 7

Bi 1,2,3 1,4,5 1,6,7 2,4,6 2,5,7 3,4,7 3,5,6

i 1 2 3 4 5 6 7

Bc
i 4,5,6,7 2,3,6,7 2,3,4,5 1,3,5,7 1,3,4,6 1,2,5,6 1,2,4,7

Notice that the complementary design is a BIBD with parameters .7; 7; 4; 4; 2/.
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Question 276 Find the complementary design of the .10; 6; 5; 3; 2/ design given earlier.

Is it a BIBD? What are its parameters?

What is the relationship between the parameters of a design and of its complementary

design? Suppose that D is a .b; v; r; k; �/ BIBD. One can quickly see that Dc is a .b; v; b�
r; v � k; ‹/ design.

Question 277 Justify these first four parameters. Also, why should we not consider finding

the complementary design of a complete design?

Does each pair of distinct varieties appear together in the same number of blocks of the

complementary design? The answer is yes and proving it requires a quick application of

inclusion-exclusion. First notice that varieties i and j appear together in a block of Dc if

and only if neither one appears in the corresponding block of D. The number of blocks of

D in which neither i nor j appears is

b � r � r C � D b � 2r C �

because there are b total blocks, r blocks containing i , r blocks containing j , and � blocks

containing both i and j . This proves the first statement in the following theorem. The

theorem’s second sentence follows by observing that .Dc/c D D.

Theorem 7.1.2 Given a .b; v; r; k; �/ BIBD, the complementary design is a .b; v; b�r; v�
k; b�2rC�/ BIBD. Moreover, there exists a .b; v; r; k; �/ design if and only if there exists

a .b; v; b � r; v � k; b � 2r C �/ design.

Constructing cyclic designs

The last construction technique of this section involves modular arithmetic, and our first

illustration of it involves constructing a 3-uniform design on 13 varieties. Instead of using

V D Œ13�, we use V D f0; 1; 2; : : : ; 12g, the set of residues modulo 13. Begin with the

“base blocks” f1; 3; 9g and f2; 5; 6g and add the residues modulo 13 to the varieties in each

base block in turn.

This is done in Figure 7.1 where the base blocks appear at the top of each column. The

notation f1; 3; 9g ˚ 5, for example, means to add 5 to each element of f1; 3; 9g and then

B1 D f1; 3; 9g˚ 0 D f1; 3; 9g B14 D f2; 5; 6g˚ 0 D f2; 5; 6g
B2 D f1; 3; 9g˚ 1 D f2; 4; 10g B15 D f2; 5; 6g˚ 1 D f3; 6; 7g
B3 D f1; 3; 9g˚ 2 D f3; 5; 11g B16 D f2; 5; 6g˚ 2 D f4; 7; 8g
B4 D f1; 3; 9g˚ 3 D f4; 6; 12g B17 D f2; 5; 6g˚ 3 D f5; 8; 9g
B5 D f1; 3; 9g˚ 4 D f5; 7; 0g B18 D f2; 5; 6g˚ 4 D f6; 9; 10g
B6 D f1; 3; 9g˚ 5 D f6; 8; 1g B19 D f2; 5; 6g˚ 5 D f7; 10; 11g
B7 D f1; 3; 9g˚ 6 D f7; 9; 2g B20 D f2; 5; 6g˚ 6 D f8; 11; 12g
B8 D f1; 3; 9g˚ 7 D f8; 10; 3g B21 D f2; 5; 6g˚ 7 D f9; 12; 0g
B9 D f1; 3; 9g˚ 8 D f9; 11; 4g B22 D f2; 5; 6g˚ 8 D f10; 0; 1g

B10 D f1; 3; 9g˚ 9 D f10; 12; 5g B23 D f2; 5; 6g˚ 9 D f11; 1; 2g
B11 D f1; 3; 9g˚ 10 D f11; 0; 6g B24 D f2; 5; 6g˚ 10 D f12; 2; 3g
B12 D f1; 3; 9g˚ 11 D f12; 1; 7g B25 D f2; 5; 6g˚ 11 D f0; 3; 4g
B13 D f1; 3; 9g˚ 12 D f0; 2; 8g B26 D f2; 5; 6g˚ 12 D f1; 4; 5g

Figure 7.1. A cyclic .26; 13; 6; 3; 1/ design.
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reduce modulo 13:

f1; 3; 9g˚ 5 D
˚

.1C 5/ mod 13; .3C 5/ mod 13; .9C 5/ mod 13
	

D f6; 8; 1g:

This produces (check!) a .26; 13; 6; 3; 1/ design.

Question 278 Let V D f0; 1; 2; 3; 4; 5; 6g be the set of residues modulo 7 and consider the

single base block f0; 1; 3g. Construct a cyclic design on seven blocks by finding f0; 1; 3g˚i

for each i 2 V . What are the parameters of the resulting design?

Characterizing cyclic designs
It turns out that not every choice of base blocks produces a .b; v; r; k; �/ design via the

cyclic method. Why do some base blocks work and others don’t?

Question 279 Re-do Question 278 but use the base block f0; 1; 2g. Why is the resulting

design not a BIBD?

Fortunately, there is a complete answer to the question of whether a given set of base blocks

generates a BIBD. The key lies in the pairwise differences between elements in the same

base block.

For the .26; 13; 6; 3; 1/ design, we used the base blocks f1; 3; 9g and f2; 5; 6g. Look at

all of the pairwise differences modulo 13 between elements of the same block. In the table

below, the top half shows the differences within the block f1; 3; 9g and the bottom half the

differences within f2; 5; 6g:

1 � 3 D �2 � 11 1 � 9 D �8 � 5 3 � 9 D �6 � 7

3 � 1 D 2 � 2 9 � 1 D 8 � 8 9 � 3 D 6 � 6

2 � 5 D �3 � 10 2 � 6 D �4 � 9 5 � 6 D �1 � 12

5 � 2 D 3 � 3 6 � 2 D 4 � 4 6 � 5 D 1 � 1

(We write �2 � 11, for example, as an abbreviation for �2 � 11 .mod 13/.) Notice that

each of the 12 nonzero residues modulo 13 occurs exactly once on this list.

Question 280 For the design of Question 278, compute the pairwise differences within the

block f0; 1; 3g. Does each nonzero residue modulo 7 occur exactly once?

The following theorem gives a complete characterization of cyclic designs in terms of

base blocks.

Theorem 7.1.3 Suppose C is a set of k-subsets of the v-set f0; 1; : : : ; v � 1g of residues

modulo v, where v > k > 2. Then C contains the base blocks of a cyclic .v; k; �/ design

if and only if the following procedure produces a list that contains each nonzero residue

modulo v exactly � times:

For each block C D fc1; : : : ; ckg of C, calculate

.ci � cj / mod v

for each ordered pair .ci ; cj / of unequal elements of C .

The proof involves applying the properties of modular arithmetic and we leave it to

Exercise 19. We now give one more example, this time with � D 3. Let v D 15 and k D 7,

and consider the base block f0; 1; 2; 4; 5; 8; 10g as a subset of the residues modulo 15. The
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0 � 1 D �1 � 14 0 � 2 D �2 � 13 0 � 4 D �4 � 11

1 � 0 D 1 � 1 2 � 0 D 2 � 2 4 � 0 D 4 � 4

0 � 5 D �5 � 10 0 � 8 D �8 � 7 0 � 10 D �10 � 5

5 � 0 D 5 � 5 8 � 0 D 8 � 8 10 � 0 D 10 � 10

1 � 2 D �1 � 14 1 � 4 D �3 � 12 1 � 5 D �4 � 11

2 � 1 D 1 � 1 4 � 1 D 3 � 3 5 � 1 D 4 � 4

1 � 8 D �7 � 8 1 � 10 D �9 � 6 2 � 4 D �2 � 13

8 � 1 D 7 � 7 10 � 1 D 9 � 9 4 � 2 D 2 � 2

2 � 5 D �3 � 12 2 � 8 D �6 � 9 2 � 10 D �8 � 7

5 � 2 D 3 � 3 8 � 2 D 6 � 6 10 � 2 D 8 � 8

4 � 5 D �1 � 14 4 � 8 D �4 � 11 4 � 10 D �6 � 9

5 � 4 D 1 � 1 8 � 4 D 4 � 4 10 � 4 D 6 � 6

5 � 8 D �3 � 12 5 � 10 D �5 � 10 8 � 10 D �2 � 13

8 � 5 D 3 � 3 10 � 5 D 5 � 5 10 � 8 D 2 � 2

Figure 7.2. Pairwise differences within the block f0; 1; 2; 4; 5; 8; 10g.

block contains seven varieties, so there are 7�6 D 42 pairwise differences to compute. They

appear in Figure 7.2. Each of the residues 1; 2; : : : ; 14 appears exactly three times so this

meets the conditions of the theorem. When found, the resulting design is a .15; 15; 7; 7; 3/

BIBD.

Question 281 Construct this design.

Not all designs are cyclic, but this method (and generalizations of it) are prolific at

producing designs. See Exercise 17 for some basic necessary conditions for cyclic designs.

Summary

A .b; v; r; k; �/ design involves a set of varieties and a multiset of blocks. Each block is a

subset of varieties. The parameters have the following meaning:

Parameter Meaning

b the number of blocks

v the number of varieties

r each variety appears in exactly r blocks

k each block contains exactly k varieties

� each pair of varieties appears together in exactly � blocks

A balanced incomplete block design (BIBD) has k < v.

Any .b; v; r; k; �/ design, if it exists, necessarily satisfies bk D vr and r.k � 1/ D
�.v � 1/. However, these conditions are not sufficient for existence. We explored methods

that construct designs from scratch (ad hoc methods, the method of cyclic designs) as well

as those that build a design from another design (repeating blocks, the complementary

design).

Exercises

1. Suppose that you know three of the five parameters in a .b; v; r; k; �/ design. In each

case below, derive a formula for the remaining parameters.



“master” — 2010/9/20 — 12:30 — page 280 — #298
i

i

i

i

i

i

i

i

280 7. Designs and Codes

(a) b, v, and r known

(b) v, k, and � known

(c) r , k, and � known

2. Describe all possible .b; v; r; 2; 1/ designs.

3. Let n > 3. Explain how to construct an .n; n; n� 1; n� 1; n� 2/ design.

4. Prove that there is only one .7; 7; 3; 3; 1/ design up to relabeling the vertices. (The

order in which the blocks are listed doesn’t matter either.)

5. Let V D Œn� and let B consist of all of the k-subsets of V , where 1 < k < n.

Determine whether this is a BIBD. If it is, give its parameters.

6. (graph theory) Explain how Kn, the complete graph on n vertices, can be thought of

as a design. Give its parameters. Also, explain why a non-complete graph is not a

design.

7. Explain combinatorially why in any .b; v; r; k; �/ design, we have b D
�
�

v
2

�

�
k
2

� .

8. Let D be an incomplete design that is k-uniform and �-balanced. Prove that D is

regular. (Hint: Revisit the proof of Theorem 7.1.1.)

9. Find a base for a cyclic .10; 5; 4; 2; 1/ design.

10. Construct a cyclic .11; 11; 5; 5; 2/ design.

11. Construct a cyclic .18; 9; 8; 4; 3/ design. (Hint: Use two base blocks.)

12. Construct a .14; 8; 7; 3; 3/ design.

13. Suppose D is a cyclic design modulo v, with the set C containing the base blocks.

Find a set of base blocks for the complementary design Dc and prove that you are

correct.

14. Prove that r 6
bC�

2
in any .b; v; r; k; �/ design.

15. You enter a lottery by picking a subset of three numbers from Œ14�. You win a prize if

you match at least two of the numbers on the winning ticket.

(a) Show that it is possible to guarantee a win by buying 14 tickets. (Hint: Use the

.7; 7; 3; 3; 1/ design.)

(b) Would an analogous strategy work if instead you had to pick three numbers from

Œ21�? Explain.

(This is called the “Transylvania lottery” and appears to be of unknown origin.)

16. Show that the set C D
n

f0; 1; 3g; f2; 6; 7g; f4; 8; 11g; f5; 10; 12g
o

contains the base

blocks of a cyclic design modulo 13. Construct the design and give its parameters.

17. (a) Explain why a .10; 6; 5; 3; 2/ design cannot be cyclic.

(b) Prove that in a cyclic design, there exists an integer c for which b D cv, ck.k �
1/ D �.v � 1/, and r D ck. What is the significance of c in terms of the design?

(c) Can a .305; 61; 20; 4; 1/ design be cyclic?
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18. Here is an illustration of how to construct a cyclic design using modulo 2 arithmetic.

Let V be the set of 4-digit binary numbers. Using the base block

B1 D f0001; 0010; 0100; 1000; 0011; 1100g;

construct the design by finding the blocks B1 ˚ v for each v 2 V . What are the

parameters of this design?

19. Prove Theorem 7.1.3.

Travel Notes

With designs, as sometimes happens with other concepts in mathematics, the recreational

problem came before the practical application. In 1847, Kirkman published a solution to

the question now known as

Kirkman’s schoolgirls problem. If once every day for a week 15 schoolgirls are to

walk in five rows of three girls each, is it possible for each girl to be in a row with

each other girl exactly once?

This problem calls for a .15; 3; 1/ design that has an additional property: resolvability. In

a resolvable design, the blocks can be arranged into groups so that each group partitions

the set of varieties. It was the eminent statistician Fisher who in the 1930s-1940s showed

how designs could be of use in statistical experiments. Much of his terminology (varieties,

blocks) stays with us today. Bose, an Indian mathematician, developed many construction

methods for designs in a 1939 paper, among them the method of cyclic designs.

7.2 The incidence matrix and symmetric designs

Any .b; v; r; k; �/ design must satisfy bk D vr and r.k � 1/ D �.v � 1/. In addition, any

BIBD has k < v and therefore � < r . We devote this section to the study of symmetric

designs which are designs with an equal number of varieties and blocks. We begin by

studying the incidence matrix which is an important tool in design theory.

The incidence matrix of a design

Another way to represent a design is with its incidence matrix. The incidence matrix of a

design .V;B/ is that v � b matrix A whose .i; j /-entry is

aij D
(

1 if variety i is in block Bj

0 otherwise.
(7.1)

Implicit in this definition is a pre-chosen ordering of both the varieties and the blocks. For

example, the incidence matrix for the .7; 7; 3; 3; 1/ design with the following labeling

i 1 2 3 4 5 6 7

Bi 1,2,3 1,4,5 1,6,7 2,4,6 2,5,7 3,4,7 3,5,6
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is the 7 � 7 matrix

A1 WD

0

B
B
B
B
B
B
B
B
B
@

B1 B2 B3 B4 B5 B6 B7

1 1 1 1 0 0 0 0

2 1 0 0 1 1 0 0

3 1 0 0 0 0 1 1

4 0 1 0 1 0 1 0

5 0 1 0 0 1 0 1

6 0 0 1 1 0 0 1

7 0 0 1 0 1 1 0

1

C
C
C
C
C
C
C
C
C
A

:

The rows and columns are labeled with the chosen ordering of varieties and blocks. Any

other ordering will do because the only requirement is that equation (7.1) hold.

As another example, the incidence matrix of the .10; 5; 6; 3; 3/ design consisting of the

3-subsets of Œ5�, namely

i 1 2 3 4 5 6 7 8 9 10

Bi 1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

is the 5 � 10 matrix

A2 WD

0

B
B
B
B
B
@

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

1 1 1 1 1 1 1 0 0 0 0

2 1 1 1 0 0 0 1 1 1 0

3 1 0 0 1 1 0 1 1 0 1

4 0 1 0 1 0 1 1 0 1 1

5 0 0 1 0 1 1 0 1 1 1

1

C
C
C
C
C
A

:

Question 282 How many rows and columns does the incidence matrix for a .28; 4; 1/

design have?

Two properties of the incidence matrix

The incidence matrix leads to important theorems in design theory. Let’s pave the way for

that work with two preliminary results.

To anticipate the first result, examine the following matrix products involving the inci-

dence matrices of the .7; 7; 3; 3; 1/ and .10; 5; 6; 3; 3/ designs shown earlier:

A1AT
1 D

0

B
B
B
B
B
B
B
B
B
@

3 1 1 1 1 1 1

1 3 1 1 1 1 1

1 1 3 1 1 1 1

1 1 1 3 1 1 1

1 1 1 1 3 1 1

1 1 1 1 1 3 1

1 1 1 1 1 1 3

1

C
C
C
C
C
C
C
C
C
A

A2AT
2 D

0

B
B
B
B
B
@

6 3 3 3 3

3 6 3 3 3

3 3 6 3 3

3 3 3 6 3

3 3 3 3 6

1

C
C
C
C
C
A

:

Something is going on here: the diagonal entries equal r and the others equal �.

The definition of matrix multiplication explains this. If A is the incidence matrix of a

.b; v; r; k; �/ design, then A is v � b and the product AAT is v � v. Any diagonal entry of
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AAT equals

.AAT /i i D (i -th row of A) � (i -th column of AT )

D (i -th row of A) � (i -th row of A)

D number of 1s in row i of A

D number of blocks in which variety i appears

D r:

Any off-diagonal entry of AAT equals (assume i 6D j )

.AAT /ij D (i -th row of A) � (j -th column of AT )

D (i -th row of A) � (j -th row of A)

D number of columns of A in which both row i and row j have a 1

D number of blocks in which varieties i and j appear together

D �:

So indeed AAT has r on the diagonal and � on the off-diagonal.

Question 283 If A3 is the incidence matrix of a .28; 4; 1/ design, then what is A3AT
3 ?

A useful way to write the product of the incidence matrix with its transpose is as a sum

of I and J matrices, where I is an identity matrix and J is a matrix of all 1s, each of

appropriate size:

AAT D

0

B
B
B
B
B
@

r � � � � � �

� r � � � � �

� � r � � � �
:::

:::
:::

: : :
:::

� � � � � � r

1

C
C
C
C
C
A

D .r � �/I C �J:

The second result we wish to prove involves the determinant of AAT . We’ll content

ourselves with computing it in the special case v D 4 as the general case is completely

analogous. When v D 4,

AAT D

0

B
B
@

r � � �

� r � �

� � r �

� � � r

1

C
C
A

:

Recall two basic facts about the determinant: (1) the determinant of a matrix remains un-

changed if we use an “add a nonzero multiple of a row/column to another row/column”

operation; (2) the determinant of a triangular matrix equals the product of its diagonal

entries.

To calculate the determinant, begin by replacing row i by row i minus row 1, for

i D 2; 3; 4, obtaining

det AAT D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

r � � �

� r � �

� � r �

� � � r

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

r � � �

� � r r � � 0 0

� � r 0 r � � 0

� � r 0 0 r � �

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

:
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To get it to triangular form replace column 1 by column i plus column 1, for i D 2; 3; 4:

det AAT D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

r C 3� � � �

0 r � � 0 0

0 0 r � � 0

0 0 0 r � �

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D .r C 3�/.r � �/3:

The last equality follows because the matrix is now (upper) triangular.

Question 284 For the design of Question 283, guess the determinant of A3AT
3 .

The general formula involving v varieties follows easily, and the following theorem

states the two results involving the incidence matrix.

Theorem 7.2.1 If A is the incidence matrix of a .b; v; r; k; �/ design, then

AAT D .r � �/I C �J

and det AAT D
�

r C .v � 1/�
�

.r � �/v�1.

Question 285 Explain why det AAT D rk.r � �/v�1 as well.

Symmetric designs and the Bruck-Ryser-Chowla theorem

A design is symmetric provided the number of blocks equals the number of varieties

(b D v). The formula bk D vr implies that any .b; v; r; k; �/ design with b D v also

has r D k and therefore is a .v; v; k; k; �/ design. The familiar .7; 7; 3; 3; 1/ design is

symmetric.

One of the most celebrated and powerful results in design theory is the Bruck-Ryser-

Chowla (BRC) theorem on symmetric designs. It provides a necessary condition for a

symmetric design’s existence. After giving a partial proof, we explore some consequences.

Theorem 7.2.2 (Bruck-Ryser-Chowla) If a symmetric .v; k; �/ design exists, then

� if v is even, then k � � is a perfect square; and

� if v is odd, then the equation

x2 D .k � �/y2 C .�1/.v�1/=2 �z2

has a nontrivial solution in integers x; y; z.

Partial proof: We prove the theorem only in the case that v is even, since the other case

requires a comparatively intricate, number-theoretic argument.

Assume that we have a symmetric .v; k; �/ design with v even and with incidence

matrix A. Theorem 7.2.1 and its subsequent Question tell us that

det AAT D rk.r � �/v�1:

Since the design is symmetric, A is square and so det AAT D .det A/.det AT / D .det A/2.

In addition, r D k in a symmetric design. Applying this to the above equation shows

.det A/2 D k2.k � �/v�1:

The left side is a perfect square so the right side is also. Since k2 is a perfect square,

.k � �/v�1 is also. But v is even, so v � 1 is odd and thus k � � is a perfect square.
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Example: do these designs exist?

What conclusion can you draw from the Bruck-Ryser-Chowla theorem about the existence

of designs with the following parameters?

(a) .111; 111; 11; 11; 1/

H) Suppose a .111; 111; 11; 11; 1/ design exists. Since the number of varieties is

odd, the BRC theorem implies that there is a nontrivial solution to

x2 D .11 � 1/y2 C .�1/.111�1/=2 � 1 � z2

or x2 D 10y2 � z2. There is: .x; y; z/ D .3; 1; 1/. The BRC theorem does not allow

us to conclude whether such a design exists. (As mentioned in Section 7.1, such a

design does not exist.)

(b) .22; 22; 7; 7; 2/

H) Suppose a .22; 22; 7; 7; 2/ design exists. Since v is even, the BRC theorem im-

plies that k � � D 7 � 2 D 5 is a perfect square. This is a contradiction, so no such

design exists. (It is worth noting that bk D vr and r.k � 1/ D �.v � 1/, so that the

basic necessary conditions do not imply the nonexistence of such a design.)

Question 286 What does the BRC theorem say about the existence of a .16; 6; 2/

design?

Example: does this design exist?

Does a .43; 43; 7; 7; 1/ design exist?

Suppose it did. In that case the BRC theorem implies that there exists integers x, y,

and z, not all zero, such that x2 D 6y2 � z2. Without loss of generality, we may assume

that the three integers do not share a common factor. Rewriting as x2 C z2 D 6y2, we see

that x2 C z2 must be even. That forces x2 and z2, and therefore x and z, to be both even

or both odd.

If x and z are both even, then x D 2k and z D 2l for some integers k and l . That

implies .2k/2 C .2l/2 D 6y2 or 2k2 C 2l2 D 3y2. Therefore 3y2 is even which forces

y to be even. Now x, y, and z are all even, but this is a contradiction because they don’t

share a common factor.

Therefore x and z are both odd. Write x D 2mC 1 and y D 2nC 1 for some integers

m and n. The equation x2 C z2 D 6y2 now becomes .2mC 1/2 C .2nC 1/2 D 6y2 or

2.m2 CmC n2 C n/C 1 D 3y2:

This implies that y is odd, so y D 2p C 1 for some integer p. Making that substitution

leads to the equation

m.mC 1/C n.nC 1/ D 6p2 C 6pC 1:

This is also a contradiction because the left side is even and the right side is odd.

Question 287 Fill in the missing details (algebraic, logical) in the above proof.

This exhausts our cases. No nontrivial solution to x2 D 6y2 � z2 exists and hence no

.43; 43; 7; 7; 1/ design exists.
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v k � Parameters Exists? Reason

7 3 1 .7; 7; 3; 3; 1/ yes Section 7.1

7 4 2 .7; 7; 4; 4; 2/ yes complement of .7; 7; 3; 3; 1/

13 4 1 .13; 13; 4; 4; 1/ yes cyclic

11 5 2 .11; 11; 5; 5; 2/ yes Exercise 10, Section 7.1

21 5 1 .21; 21; 5; 5; 1/ yes cyclic

11 6 3 .11; 11; 6; 6; 3/ yes complement of .11; 11; 5; 5; 2/

16 6 2 .16; 16; 6; 6; 2/ yes Exercise 18, Section 7.1

31 6 1 .31; 31; 6; 6; 1/ yes cyclic

15 7 3 .15; 15; 7; 7; 3/ yes Section 7.1

22 7 2 .22; 22; 7; 7; 2/ no BRC theorem (this section)

43 7 1 .43; 43; 7; 7; 1/ no BRC theorem (this section)

15 8 4 .15; 15; 8; 8; 4/ yes complement of .15; 15; 7; 7; 3/

29 8 2 .29; 29; 8; 8; 2/ no BRC theorem (Exercise 2)

57 8 1 .57; 57; 8; 8; 1/ yes cyclic

13 9 6 .13; 13; 9; 9; 6/ yes complement of .13; 13; 4; 4; 1/

19 9 4 .19; 19; 9; 9; 4/ yes cyclic

25 9 3 .25; 25; 9; 9; 3/ yes see Travel Notes

37 9 2 .37; 37; 9; 9; 2/ yes cyclic

73 9 1 .73; 73; 9; 9; 1/ yes cyclic

Table 7.1. All possible nontrivial symmetric designs for 3 6 k 6 9.

Symmetric designs with 3 6 k 6 9

It is interesting to investigate the possibility of symmetric designs for relatively small block

sizes. Table 7.1 summarizes these possibilities for 3 6 k 6 9. Notice that a symmetric

.v; v; k; k; �/ design has � D k.k�1/
v�1

, so a choice for v and k automatically determines

�. Thus, for each value of k satisfying 3 6 k 6 9, the table includes only those values

of v for which k.k�1/
v�1

is an integer. One exception is when v D k C 1. In that case the

design is a .kC 1; kC 1; k; k; k� 1/ design which is easily constructed. See Exercise 3 of

Section 7.1.

For example, when the block size is k D 8 the only values of v (assuming of course

that v > 8) for which

� D 8.8 � 1/

v � 1
D 56

v � 1

is an integer are v D 9; 15; 29; 57. Since the .9; 9; 8; 8; 7/ design trivially exists, we only

list the three corresponding to v D 15; 29; 57.

Question 288 When k D 10, which values of v should be considered? What are the cor-

responding values of �?

Various researchers have settled the existence question for each of these designs. If

we address the existence question for a particular design in this book, the table gives its
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reference. The word “cyclic” indicates that the design can be constructed via the method

of cyclic designs presented in Section 7.1.

The residual design and the derived design

We now explore two construction methods that apply to symmetric designs. Each method

builds a non-symmetric design from a symmetric one and therefore adds support to the

study of symmetric designs. First, we must understand a property of symmetric designs

that justifies the methods.

Symmetric designs are linked
Notice that in the .7; 7; 3; 3; 1/ design

f1; 2; 3g f1; 4; 5g f1; 6; 7g f2; 4; 6g f2; 5; 7g f3; 4; 7g f3; 5; 6g
and in the .15; 15; 7; 7; 3/ you constructed in Question 281 on page 279, namely

f0; 1; 2; 4; 5; 8; 10g f5; 6; 7; 9; 10; 13; 0g f10; 11; 12; 14; 0; 3; 5g
f1; 2; 3; 5; 6; 9; 11g f6; 7; 8; 10; 11; 14; 1g f11; 12; 13; 0; 1; 4; 6g
f2; 3; 4; 6; 7; 10; 12g f7; 8; 9; 11; 12; 0; 2g f12; 13; 14; 1; 2; 5; 7g
f3; 4; 5; 7; 8; 11; 13g f8; 9; 10; 12; 13; 1; 3g f13; 14; 0; 2; 3; 6; 8g
f4; 5; 6; 8; 9; 12; 14g f9; 10; 11; 13; 14; 2; 4g f14; 0; 1; 3; 4; 7; 9g;

(7.2)

any pair of unequal blocks has exactly � varieties in common. This requires checking
�

7
2

�

D 21 pairs in the first design and
�

15
2

�

D 105 pairs in the second.

In general, a design is l -linked provided that jBi \ Bj j D l for all blocks Bi and Bj

with i 6D j . The property observed in the two examples of the previous paragraph happens

in general. The proof, asked for in Exercise 12, works with the incidence matrix.

Theorem 7.2.3 If a BIBD is symmetric, then it is linked. That is, given any symmetric

.v; k; �/ BIBD, it follows that every pair of unequal blocks has exactly � varieties in com-

mon.

The theorem is trivially true in the case of a complete design.

The residual design

Given a symmetric BIBD, we construct the residual design by (1) choosing any block B0;

(2) deleting B0; and (3) deleting the varieties in B0 from the remaining blocks.

For example, the choice of B0 WD f9; 10; 11; 13; 14; 2; 4g in the .15; 15; 7; 7; 3/ design

shown in (7.2) produces the residual design having the following blocks:

f0; 1; 5; 8g f5; 6; 7; 0g f12; 0; 3; 5g
f1; 3; 5; 6g f6; 7; 8; 1g f12; 0; 1; 6g
f3; 6; 7; 12g f7; 8; 12; 0g f12; 1; 5; 7g
f3; 5; 7; 8g f8; 12; 1; 3g f0; 3; 6; 8g
f5; 6; 8; 12g f0; 1; 3; 7g:

It is a .14; 8; 7; 4; 3/ design.

Question 289 Find the residual design that results from choosing B0 WD f1; 6; 7g in the

.7; 7; 3; 3; 1/ design. Then do the same but choose B0 WD f3; 4; 7g. Explain why any two

residual designs are essentially the same no matter the choice of B0.
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In general, if we start with a symmetric .v; k; �/ BIBD, the residual design is a .v �
1; v � k; k; k � �; �/ design. To justify these parameters, assume we delete the block

B0. This leaves v � 1 blocks. When we remove the k varieties in B0 from the remaining

blocks, this leaves v�k varieties. Since the design is �-linked, each block has � varieties in

common with B0, so the residual design contains blocks of size k��. Finally, the residual

design remains k-uniform and �-balanced because these properties are inherited from the

original, symmetric design.

The derived design

Given a symmetric BIBD, we construct the derived design by (1) choosing any block B0;

(2) deleting B0; and (3) replacing each remaining block by its intersection with B0.

For example, the choice of B0 WD f9; 10; 11; 13; 14; 2; 4g in the .15; 15; 7; 7; 3/ design

leads to the derived design having the following blocks:

f2; 4; 10g f9; 10; 13g f10; 11; 14g
f2; 9; 11g f10; 11; 14g f11; 13; 4g
f2; 4; 10g f9; 11; 2g f13; 14; 2g
f4; 11; 13g f9; 10; 13g f13; 14; 2g
f4; 9; 14g f14; 4; 9g:

It is a .14; 7; 6; 3; 2/ design.

In general, if we start with a symmetric .v; k; �/ BIBD, the derived design is a .v �
1; k; k � 1; �; �� 1/ BIBD.

Question 290 Justify the value of each of these parameters. When do you need the fact

that a symmetric design is linked?

The following theorem summarizes the basic facts about the residual and derived de-

signs.

Theorem 7.2.4 Given a symmetric .v; k; �/ BIBD,

� the residual design is a .v � 1; v � k; k; k � �; �/ design, and

� the derived design is a .v � 1; k; k � 1; �; � � 1/ design.

In other words, if there exists a symmetric .v; k; �/ BIBD, then there exists both a .v �
1; v � k; k; k � �; �/ and a .v � 1; k; k � 1; �; �� 1/ design.

It is natural to ask whether the converse is true, as it is in Theorem 7.1.2 on the com-

plementary design. For example, if a .v � 1; v � k; k; k � �; �/ design exists, can we

always “undo” the process of constructing the residual design to conclude that a symmet-

ric .v; k; �/ design exists? The answer is no. Bhattacharya (1944) gave an example of a

.24; 16; 9; 6; 3/ design which cannot be embedded as the residual of a symmetric .25; 9; 3/

design. See Exercise 13. However, some conditions are known under which such an em-

bedding is possible. See Chapter 16 of Hall (1986).

Example: residual and derived designs

Given a symmetric .16; 6; 2/ design, what designs can be constructed from it?

With .v; k; �/ D .16; 6; 2/, the residual design is a

.v � 1; v � k; k; k � �; �/ D .15; 10; 6; 4; 2/
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design and the derived design is a

.v � 1; k; k � 1; �; �� 1/ D .15; 6; 5; 2; 1/

design. We can also construct the complementary design in each case. This gives six de-

signs (including the original one) and they have the following parameters:

.16; 16; 6; 6; 2/ .15; 10; 6; 4; 2/ .15; 6; 5; 2; 1/

.16; 16; 10; 10; 6/ .15; 10; 9; 6; 5/ .15; 6; 10; 4; 6/:

Summary

In a symmetric design, the number of blocks equals the number of varieties. They form

a well-studied class of BIBDs and many existence/non-existence results are known for

them. The Bruck-Ryser-Chowla theorem gives necessary conditions for the existence of

symmetric designs, and it has proven to be a rather effective tool for researchers. Sym-

metric designs are also a source of non-symmetric designs via the methods of the residual

design and the derived design.

Linear algebra, and in particular the incidence matrix, plays an important role in the

results of this section and indeed the rest of this chapter.

Exercises

1. Find the smallest value of r (where r > 1) for which a .b; v; r; 6; 1/ design might

exist according to all necessary conditions studied so far. Determine b and v for that

value of r , and then also determine two more values of r for which such a design

might exist.

2. Use the Bruck-Ryser-Chowla theorem to prove that a .29; 29; 8; 8; 2/ design does not

exist. (Hint: Start off in a similar manner to the example in this section involving a

.43; 7; 1/ design.)

3. Determine whether a symmetric .43; 36; 30/ design exists.

4. Suppose n > 2. What does the BRC theorem say about the existence of a .n2 C nC
1; nC1; 1/ design? Find two different values of n for which such designs do not exist.

5. Prove that if a design is symmetric with � D 1, then there exists an integer n such that

the design has parameters .n2 C nC 1; n2 C nC 1; nC 1; nC 1; 1/. (Such a design

is called a projective plane.)

6. You need to construct an .8; 2; 1/ design. Can it be constructed by finding the residual

or derived design of an appropriate symmetric design? Justify.

7. Construct a .14; 7; 8; 4; 4/ design.

8. Consider a symmetric .v; k; �/ BIBD. Show that the residual design of its comple-

mentary design has the same parameters as the complementary design of its derived

design.

9. Let D be a design with incidence matrix A. Define the dual design of D to be that

design with incidence matrix AT . We use DT to denote the dual design.

Assume that D is a .b; v; r; k; �/ BIBD. Find a sufficient condition for DT to be a

BIBD and prove that you are correct. Also, find the parameters of DT .
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10. A biplane is a symmetric .v; k; 2/ design.

(a) Prove that the parameters of a biplane must satisfy v D k.k�1/
2
C 1.

(b) Use any known necessary conditions to determine whether a biplane could exist

for each value of k satisfying 3 6 k 6 11.

11. Prove that no biplane with k D 12 exists. (See previous exercise.)

12. Prove Theorem 7.2.3. (Hint: Observe that AJ D kJ and JA D kJ where A is

the incidence matrix and J is the all-1s matrix. Justify why A�1 exists, then use

AAT D .k � �/I C �J to prove that AT A D .k � �/I C �J as well.)

13. (based on Hall (1986)) Here is the .24; 16; 9; 6; 3/ design of Bhattacharya that we

mentioned in this section:

1; 2; 7; 8; 14; 15 3; 5; 7; 8; 11; 13 2; 3; 8; 9; 13; 16

3; 5; 8; 9; 12; 14 1; 6; 7; 9; 12; 13 2; 5; 7; 10; 13; 15

3; 4; 7; 10; 12; 16 3; 4; 6; 13; 14; 15 4; 5; 7; 9; 12; 15

2; 4; 9; 10; 11; 13 3; 6; 7; 10; 11; 14 1; 2; 3; 4; 5; 6

1; 4; 7; 8; 11; 16 2; 4; 8; 10; 12; 14 5; 6; 8; 10; 15; 16

1; 6; 8; 10; 12; 13 1; 2; 3; 11; 12; 15 2; 6; 7; 9; 14; 16

1; 4; 5; 13; 14; 16 2; 5; 6; 11; 12; 16 1; 3; 9; 10; 15; 16

4; 6; 8; 9; 11; 15 1; 5; 9; 10; 11; 14 11; 12; 13; 14; 15; 16

Find two blocks that have four elements in common, and then use that to explain why

this design cannot be the residual of a symmetric .25; 9; 3/ design.

Travel Notes

As we will see in Section 7.5, the incidence matrix of a design proves useful in the theory of

error-correcting codes as the rows of incidence matrices form such a code. Good references

for the reader interested in the complete proof of the Bruck-Ryser-Chowla theorem are Hall

(1986) and Van Lint & Wilson (1992). The theorem was first proved for symmetric designs

with � D 1 in 1949 by Bruck and Ryser. In 1950, Chowla and Ryser completed the proof

for general �. Concerning the note in Table 7.1, see Appendix I of Hall (1986) for an

example of a symmetric .25; 9; 3/ design.

7.3 Fisher’s inequality and Steiner systems

In this section we prove one last necessary condition for the existence of a BIBD and then

investigate Steiner triple systems. From there, we generalize the idea of a design to that of

a t-design and then introduce general Steiner systems.

Fisher’s inequality

In all BIBDs we have encountered so far, the number of varieties does not exceed the

number of blocks. This is true in general and was proved by the statistician Fisher (1940).

The proof we present uses the incidence matrix and the following facts from linear algebra.

1. If B is n � n and det B 6D 0, then rank B D n. (Any square matrix with nonzero

determinant has full rank.)
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2. The inequality rank CD 6 rank C holds for any matrices C and D, provided CD is

defined. (This is sometimes known as the rank-of-products inequality.)

3. The rank of a matrix is at most the number of columns.

Fisher’s inequality applies to BIBDs and says b > v, or that the number of blocks is at

least as great as the number of varieties.

Question 291 Give an example to show that Fisher’s inequality doesn’t necessarily hold

for complete designs.

Theorem 7.3.1 (Fisher’s inequality) In any .b; v; r; k; �/ BIBD, b > v and r > k.

Proof: Consider any .b; v; r; k; �/ BIBD with incidence matrix A. By Theorem 7.2.1, we

know det.AAT / D rk.r � �/v�1. But Question 273 shows that r > � in any BIBD, so

det.AAT / 6D 0 and hence rank AAT D v. Using the facts mentioned before the theorem,

v D rank AAT
6 rank A 6 b

which proves Fisher’s inequality b > v. The equation bk D vr then implies r > k.

Steiner triple systems

A triple system is 3-uniform design, that is, a .v; 3; �/ design. The .7; 7; 3; 3; 1/ and

.10; 6; 5; 3; 2/ designs are triple systems. A Steiner triple system is a 1-balanced triple

system, that is, a .v; 3; 1/ design. The .7; 7; 3; 3; 1/ design and the .26; 13; 6; 3; 1/ design

of Figure 7.1 on page 277 are Steiner triple systems. Since the number of varieties v deter-

mines the rest of the parameters in a Steiner triple system, a .v; 3; 1/ design is sometimes

simply called an STS.v/ design.

Triple systems are important in design theory for several reasons. For one, design the-

ory began in the mid-1800s with the work of Kirkman and Steiner on the existence of what

we now call Steiner triple systems. Also, having k D 3 is the smallest value of the block

size k for which the existence and construction questions are, in general, nontrivial.

A necessary and sufficient condition

Any STS.v/ design, if it exists, is a .b; v; r; 3; 1/ design. In the example following Theorem

7.1.1 in Section 7.1, we found that a necessary condition for such a design to exist is

r D v�1
2

and b D v.v�1/
6

. That is, v must be odd and v.v � 1/ must be divisible by 6.

To push this a little farther, divide v by 6 and write v D 6q C s where q is an integer

and s is an integer satisfying 0 6 s < 6. Since v is odd, s D 1, 3, or 5. It turns out that

Theorem 7.1.1 eliminates the possibility that s D 5.

Question 292 Assume v D 6q C 5 and then use b D v.v�1/
6

to derive a contradiction.

This proves that any STS.v/ design must have v D 6qC 1 or v D 6qC 3 for some integer

q, which proves the necessary condition in the following theorem. We omit the proof of

sufficiency and instead describe construction methods (one in this section, one in Section

7.5) that work in certain cases. A good reference for the proof is Chapter 15 of the book by

Hall (1986).

Theorem 7.3.2 Let v > 3. A Steiner triple system on v varieties exists if and only if either

v � 1 .mod 6/ or v � 3 .mod 6/.

In other words, a Steiner triple system exists exactly when the number of varieties belongs

to the set f3; 7; 9; 13; 15; 19; 21; 25; 27; : : :g. Notice that the STS.3/ design is trivial. Table

7.2 contains a systematic list of the parameters of Steiner triple systems.
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b v r k �

1 3 1 3 1

7 7 3 3 1

12 9 4 3 1

26 13 6 3 1

35 15 7 3 1

57 19 9 3 1

70 21 10 3 1

100 25 12 3 1

117 27 13 3 1
:::

:::
:::

:::
:::

v.v�1/
6

v v�1
2

3 1

:::
:::

:::
:::

:::

Table 7.2. The parameters of Steiner triple systems.

A construction method for Steiner triple systems

We now present a method that creates an STS.v1v2/ design from an STS.v1/ and an

STS.v2/ design. For example, from an STS.9/ and an STS.13/ design, we can build an

STS.117/ design.

To illustrate, we will create an STS.21/ design from the STS.3/ design

V1 D fx; y; zg

B1 D
n

fx; y; zg
o

and the usual STS.7/ design

V2 D f1; 2; 3; 4; 5; 6; 7g

B2 D
n

f1; 2; 3g; f1; 4; 5g; f1; 6; 7g; f2; 4; 6g; f2; 5; 7g; f3; 4; 7g; f3; 5; 6g
o

:

Table 7.2 reminds us that an STS.21/ design has 70 blocks.

The set of varieties of the new design is the set V1 � V2, the Cartesian product of V1

and V2. To save space, write it as the following set of two-letter words:

V1 � V2 D fx1; x2; : : : ; x7; y1; y2; : : : ; y7; z1; z2; : : : ; z7g:

Now for the blocks. They are constructed as follows.

� Type I: All blocks fcm; dm; emg where fc; d; eg 2 B1 and m 2 V2.

� Type II: All blocks fnf; ng; nhg where n 2 V1 and ff; g; hg 2 B2.

� Type III: All blocks fcf; dg; ehgwhere fc; d; eg 2 B1 and ff; g; hg 2 B2.

In our example, we include 1 � 7 D 7 blocks of Type I:

fx1; y1; z1g fx2; y2; z2g fx3; y3; z3g fx4; y4; z4g
fx5; y5; z5g fx6; y6; z6g fx7; y7; z7g (7.3)
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We include 3 � 7 D 21 of Type II:

fx1; x2; x3g fy1; y2; y3g fz1; z2; z3g
fx1; x4; x5g fy1; y4; y5g fz1; z4; z5g
fx1; x6; x7g fy1; y6; y7g fz1; z6; z7g
fx2; x4; x6g fy2; y4; y6g fz2; z4; z6g
fx2; x5; x7g fy2; y5; y7g fz2; z5; z7g
fx3; x4; x7g fy3; y4; y7g fz3; z4; z7g
fx3; x5; x6g fy3; y5; y6g fz3; z5; z6g

(7.4)

Type III blocks require clarification. We must include all blocks fcf; dg; ehg over all pos-

sible permutations of the varieties in the block fc; d; eg and in the block ff; g; hg. Equiva-

lently, we can fix a particular order of the varieties in the block from B1 and then include

all permutations of the three varieties in each block from B2. We thus include 1 �7 �3Š D 42

blocks of the third type:

fx1; y2; z3g fx1; y3; z2g fx2; y1; z3g
fx2; y3; z1g fx3; y1; z2g fx3; y2; z1g
fx1; y4; z5g fx1; y5; z4g fx4; y1; z5g
fx4; y5; z1g fx5; y1; z4g fx5; y4; z1g
fx1; y6; z7g fx1; y7; z6g fx6; y1; z7g
fx6; y7; z1g fx7; y1; z6g fx7; y6; z1g

:::
:::

:::

fx3; y5; z6g fx3; y6; z5g fx5; y3; z6g
fx5; y6; z3g fx6; y3; z5g fx6; y5; z3g:

(7.5)

In total there are 7C21C42D 70 blocks among (7.3), (7.4), and (7.5), and these comprise

our new design.

At this point we have a design with b D 70, v D 21, and k D 3. To complete the proof

that it is an STS.21/ design, we must show that r D 10 and � D 1 per Table 7.2.

To show r D 10, we take a generic variety wi belonging to V1 � V2. It appears in Type

I blocks exactly one time, in Type II blocks exactly three times, and in Type III blocks

exactly 1 � 3Š D 6 times. Thus this variety appears 1C 3C 6 D 10 times total.

Question 293 Verify that � D 1 by taking a generic pair of varieties wi; uj and showing

that they appear together exactly once in the new design. (Consider cases based on whether

w D u, i D j , or w 6D u and i 6D j .)

This procedure works in general and proves the existence of many STS.v/ designs. For ex-

ample, since we have constructed STS.3/ and STS.7/ designs, we know that an STS.3m7n/

design exists for nonnegative integers m and n, not both zero.

Theorem 7.3.3 If a Steiner triple system on v1 varieties exists and so does one on v2

varieties, then a Steiner triple system on v1v2 varieties exists.

t-designs

In a .b; v; r; k; �/ design, any two varieties appear together in exactly � blocks. One nat-

ural generalization of this idea would require instead that any three varieties, or any four

varieties, or more, appear together in exactly � blocks.
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In general, we define a t-.v; k; �/ design to be a design on v varieties and having size-k

blocks such that any t varieties appear together in exactly � blocks. Often this is shortened

to just t-design.

Our work from the beginning of this chapter until now has involved 2-designs. That is,

any .b; v; r; k; �/ design is a 2-.v; k; �/ design.

Here is an example of a 3-design, specifically a 3-.10; 4; 1/ design. It has 10 varieties,

30 blocks of size 4, and every triple of varieties appears together in exactly one block:

f1; 5; 6; 10g f1; 2; 8; 9g f2; 3; 6; 7g f3; 4; 9; 10g f4; 5; 7; 8g
f1; 3; 4; 7g f4; 6; 8; 9g f2; 7; 8; 10g f2; 3; 5; 9g f2; 4; 5; 10g
f5; 6; 7; 9g f3; 6; 8; 10g f1; 3; 5; 8g f1; 7; 9; 10g f1; 2; 4; 6g
f2; 3; 4; 8g f2; 4; 7; 9g f3; 7; 8; 9g f3; 4; 5; 6g f3; 5; 7; 10g
f4; 6; 7; 10g f1; 4; 5; 9g f1; 4; 8; 10g f5; 8; 9; 10g f1; 2; 5; 7g
f2; 5; 6; 8g f1; 6; 7; 8g f1; 2; 3; 10g f1; 3; 6; 9g f2; 6; 9; 10g:

(7.6)

At this point, you’ll either have to take that latter statement on faith or else check for

yourself that it is true for each of the
�
8
3

�

D 56 possible 3-subsets of varieties. Exercise

7 provides an interesting way around this and also shows how this particular design was

constructed.

Question 294 The .7; 3; 1/ design is a 2-.7; 3; 1/ design. Is it a t-design for any other

value of t? Explain.

Basic properties of t-designs

Examine the 3-.10; 4; 1/ design shown in (7.6). We can determine that such a design must

have 30 blocks as follows. There are
�
v
t

�

D
�

10
3

�

possible 3-subsets of varieties, and each

must appear in exactly � D 1 blocks of the design. This means that there are �
�

v
t

�

D 1 �
�

10
3

�

total 3-subsets to “cover” among the blocks of the design. Each size-4 block contains
�
k
t

�

D
�

4
3

�

possible 3-subsets of varieties. This means that

b D number of blocks

D total number of t-subsets to “cover”

number of t-subsets “covered” per block

D
�
�

v
t

�

�
k
t

�

D
1 �
�
10
3

�

�
4
3

�

D 30:

It is also possible to prove that b
�
k
t

�

D �
�

v
t

�

using a combinatorial proof that generalizes

the idea used in the proof of Theorem 7.1.1 of Section 7.1.

Question 295 Provide this proof. (Count pairs of the form .B; T / where B is a block and

T is a t-subset of B .)

We also can determine that a 3-.10; 4; 1/ design has r D 12 using a modification of the

proof of Theorem 7.1.1. We ask the question: For a fixed variety y, how many pairs .B; T /

are possible where B is a block containing y and T is a 3-subset of B containing y?
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There are r ways to choose a block B containing variety y. For each such choice, there

are
�

k�1
t�1

�

D
�

3
2

�

ways to choose the t�1 D 2 other varieties from B to complete the subset

T . Therefore there are r
�
k�1
t�1

�

D r
�
3
2

�

pairs in all.

On the other hand, there are
�
v�1
t�1

�

D
�

9
2

�

ways to choose t � 1 D 2 varieties to include

with y in the subset T . For each such choice, there is � D 1 way to choose a block B

containing the varieties in T . Therefore there are �
�

v�1
t�1

�

D 1 �
�
9
2

�

pairs in all.

Setting r
�
3
2

�

D 1 �
�
9
2

�

gives r D 12. In the course of our discussion, we have proved

the following more general version of Theorem 7.1.1.

Theorem 7.3.4 If a t-.v; k; �/ design exists, then b
�

k
t

�

D �
�

v
t

�

and r
�
k�1
t�1

�

D �
�

v�1
t�1

�

.

Much more work can be done. In fact, any t-design is also an i -design for all i < t . For

example, the 3-design we showed earlier is also a 2-design and hence an ordinary BIBD.

Question 296 When treated as a 2-design, what are the parameters .b; v; r; k; �/ of the

3-.10; 4; 1/ design shown in (7.6)?

The following result, sometimes called the parameter theorem, makes this precise. One

possible proof follows a line of reasoning similar to that used in the proof of Theorem

7.3.4. We leave it to Exercise 10.

Theorem 7.3.5 (parameter theorem) If D is a t-.v; k; �/ design and i satisfies 0 6 i <

t , then D is also an i -.v; k; �i / design where �i satisfies �i

�
k�i
t�i

�

D �
�

v�i
t�i

�

.

Question 297 In the statement of the theorem, what are �0 and �1 in terms of more famil-

iar design parameters?

Two examples follow that illustrate this theorem.

Example: a 2-design from a 3-design

Suppose we have a 3-.8; 4; 1/ design. (See Exercise 6 for an example of one.) When con-

sidered a 2-design, what are its parameters?

The parameter theorem implies that it is a 2-.8; 4; �2/ design where �2 satisfies

�2

 

4 � 2

3 � 2

!

D 1 �
 

8 � 2

3 � 2

!

which gives �2 D 3. Therefore it is a 2-.8; 4; 3/ design, or equivalently a .14; 8; 7; 4; 3/

BIBD.

Example: does this design exist?

What do the necessary conditions of Theorems 7.3.4 and 7.3.5 imply about the existence

of a 4-.20; 6; 10/ design?

If such a design exists, then by Theorem 7.3.4 it would have

b D
�
�

v
t

�

�
k
t

� D
10 �

�
20
4

�

�
6
4

� D 3230

and

r D
�
�

v�1
t�1

�

�
k�1
t�1

� D
10
�
19
3

�

�
5
3

� D 969:
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That is, it would have 3230 blocks and each variety would appear in exactly 969 blocks.

Since each of these numbers is an integer, this does not rule out the existence of this design.

By Theorem 7.3.5, the design would also be a 3-.20; 6; �3/ design, where

�3 D
�
�

v�3
t�3

�

�
k�3
t�3

� D
10 �

�
17
1

�

�
3
1

� D 170

3
:

Since �3 is not an integer, we conclude that no 4-.20; 6; 10/ design exists.

Steiner systems

To close, we briefly mention an important and well-studied class of t-designs. A Steiner

system is a t-design with � D 1. In other words, a Steiner system is a t-.v; k; 1/ design.

This is usually abbreviated S.t; k; v/. The all-purpose .7; 3; 1/ design is an S.2; 3; 7/ de-

sign, and indeed any Steiner triple system is an S.2; 3; v/ design. The design shown in (7.6)

is an S.3; 4; 10/ design.

Unlike Theorem 7.3.2, which gives a necessary and sufficient condition for the exis-

tence of a Steiner triple system, no comparable theorem is known for more general Steiner

systems. We have seen examples of an S.t; k; v/ design for t D 2; 3. Examples exist for

t D 4; 5 but this is the end of our knowledge—the question of whether one exists for t > 5

remains an open problem. The largest (in terms of the number of blocks) known Steiner

system with t D 5 is an S.5; 6; 84/ design.

Question 298 What are b and r for an S.5; 6; 84/ design?

As we will see in Section 7.5, error-correcting codes can be a source of Steiner systems.

Summary

Fisher’s inequality rounds out the list of basic relationships that are necessary for the ex-

istence of a BIBD: bk D vr , r.k � 1/ D �.v � 1/, b > v, r > k, v > k, and r > �.

A generalization of a .v; k; �/ design is a t-.v; k; �/ design, wherein every t-subset of

varieties appears in exactly � blocks. A Steiner system is a t-design with � D 1. While

a complete answer is known to the existence question concerning Steiner triple systems,

which are 2-.v; 3; 1/ designs, the construction of Steiner systems for t > 2 is a much more

complicated problem.

Exercises

1. How many symmetric Steiner triple systems are there? Justify your answer.

2. Construct an STS.9/ design.

3. Find all values of � for which a triple system on six varieties exists. For each such

value of �, either give a design or explain how to construct it.

4. (graph theory) Prove that there exists an STS.v/ design if and only if it is possible

to partition the edges of the complete graph Kv into edge-disjoint subgraphs each of

which is K3.

5. Prove Theorem 7.3.3 by generalizing the argument given for the v1 D 3 and v2 D 7

example in the text.
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6. Consider the .7; 3; 1/ design of Section 7.1. Define a new design D as follows. It has

eight varieties and 14 blocks, where the blocks are of two types: (I) the blocks of the

.7; 3; 1/ design but with variety 8 added to each; (II) the blocks of the complementary

design to the .7; 3; 1/ design.

Prove that this is an S.3; 4; 8/ design. (When you prove � D 1, do so by using the

structure of the .7; 3; 1/ design and its complement; do not check all
�

8
3

�

possible

3-subsets of V by brute force.)

7. (graph theory) Here is a way to construct the 3-.10; 4; 1/ design shown in this section.

Draw the complete graph K5 and label its edges 1-10. The varieties for the design are

the edges: V D Œ10�. The blocks are of three types: (I) edges in a subgraph isomorphic

to K1;4; (II) edges in a subgraph isomorphic to K2 [ C3; (III) edges in a subgraph

isomorphic to C4.

(a) List all of the blocks. How many of each type are there?

(b) Using the graph structure, prove that this is a 3-design with � D 1.

8. (graph theory) Along the lines of the previous example, consider the following design.

The varieties are the (labeled) edges of the complete graph K6. The blocks are of two

types: (I) edges in a perfect matching1; (II) edges in a subgraph isomorphic to C3.

Determine the parameters so that this design is a t-.v; k; �/ design and prove that you

are correct.

9. Might a 3-.16; 6; 2/ design exist according to the necessary conditions of Theorems

7.3.4 and 7.3.5? Explain.

10. Prove the parameter theorem (Theorem 7.3.5).

Travel Notes

For further reading, Hall (1986) is an excellent advanced reference on design theory. It

includes a comprehensive list of known results on the existence/nonexistence of BIBDs

with 3 6 r 6 20.

7.4 Perfect binary codes

For the moment we leave the field of design theory and take up the study of error-correcting

codes. Our goal in this section is to understand the construction of a certain type of error-

correcting code. Let’s jump right in and see how such a code works.

The Hamming .7; 24; 3/ code

A probe sent to the farthest reaches of our solar system transmits pictures back to Earth.

Each picture is a grayscale image made of pixels where each pixel has an intensity value

from 0 (black) to 15 (white).2 Picture transmission is a “one-shot” affair: we get one and

only one chance to transmit each picture so it must be done accurately. The remote location

1A perfect matching in a graph G with n vertices is a set of n=2 edges, no two of which meet at a vertex.
2This small range of values suits to illustrate the idea. Grayscale values 0–63 or 0–255 are more typical in

applications.
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of the probe and its limited power supply prevent us from repairing it or retransmitting an

image.

With the agreement that each picture requires accurate transmission comes the sober

realization that errors in transmission can happen. Problems may occur with the probe’s

equipment, with the equipment here on Earth, or even in between such as interference

from atmospheric or cosmic effects. Many of these are beyond the control of scientists and

engineers. Can a transmission method guard against them?

The code shown in Table 7.3 provides an ingenious way to do so. It contains a list

of some 7-digit binary numbers, called codewords, along with their grayscale equivalents.

This code is called the Hamming .7; 24; 3/ code. The first parameter indicates that each

codeword has length 7 and the second that there are 24 codewords. The third indicates that

the code has minimum distance 3, and we shall see what this means later in this section.

To transmit a pixel having grayscale value 11, the probe sends 1011010. To transmit

grayscale 3, it sends 0011001.

Codeword Intensity (grayscale) Codeword Intensity (grayscale)

0000000 0 1000011 8

0001111 1 1001100 9

0010110 2 1010101 10

0011001 3 1011010 11

0100101 4 1100110 12

0101010 5 1101001 13

0110011 6 1110000 14

0111100 7 1111111 15

Table 7.3. The Hamming .7; 24; 3/ code applied to transmitting a grayscale image.

Imagine the probe sends a certain grayscale value and Earth receives 1010001. This

word does not appear on the list of codewords so it has no grayscale equivalent. But it is

close to codeword 1010101 which corresponds to grayscale 10; in fact the two words

only differ by one digit. Similarly, the non-codeword 1101011 differs from 1101001

(grayscale 13) by only one digit.

What makes the code ingenious is the following remarkable property: each of the 27 D
128 possible 7-digit binary numbers is either one of the 16 codewords or else differs from

a unique codeword in exactly one digit. In our application this means that Earth can receive

the exact image the probe originally sent even when one error is made in transmitting each

grayscale value. If Earth receives a 7-digit binary number that is not on the codeword list,

simply replace it by the codeword closest to that number. Under the assumption that at

most one error is made in transmitting each grayscale value, this decoding method ensures

the correct reception of the original image.

Of course all bets are off under the possibility of more than one error in the trans-

mission of a single grayscale value. For example, suppose at most two errors are made in

transmitting each grayscale value. If Earth receives 1010000, then did the probe origi-

nally send 0000000 (grayscale 0) or 1010101 (grayscale 10) or 1110000 (grayscale

14)? These correspond to black, light gray, and almost white, respectively, so this affects

picture accuracy significantly.
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An improved code would correct more errors but the ability to correct even just one

error is a worthy achievement. Intuitively, the ability to correct more than one error would

necessitate longer codewords. However, shorter codewords are certainly desirable inas-

much as they require less storage space and allow for faster transmission.

The mathematical properties and trade-offs of error-correcting codes are just as inter-

esting as the practical considerations that arise from the applications themselves. For one,

we shall see that so-called perfect binary codes, of which the Hamming .7; 24; 3/ code is

one example, are rather rare. We focus on the existence and construction questions involv-

ing perfect codes and leave the all-important and equally interesting field of decoding to

other sources.

Binary codes

Let Bn be the set of all n-digit binary numbers. A binary code is any nonempty subset

of Bn, and the elements of this set are called codewords. Any point in Bn that is not a

codeword is called a word. In the context of sending messages, the codewords are just

those points in Bn to which we have attached a meaning. All other words have no meaning

and result from the faulty transmission of a codeword. The Hamming .7; 24; 3/ code is a

binary code on B7.

We will need ways of combining, scaling, and measuring distance between codewords,

so really we treat Bn as a vector space with the familiar operations of addition and scalar

multiplication, but taken component-wise modulo 2. An example of addition in B6 is

101110˚ 011000D 110110:

The ˚ operator reminds us we are performing addition modulo 2 in each component. The

rules are: 0 C 0 D 0, 0C 1 D 1, 1 C 0 D 1, and 1 C 1 D 0. The scalar multiplication

operation is also easy: for example, 0.101110/D 000000 and 1.101110/ D 101110.

Hamming distance

The key concept that drives both the error-correcting abilities and the decoding method is

that of distance. The Hamming distance between words v and w in Bn is defined as

h.v ; w/ WD number of components in which v and w differ.

For example, in B6 we have h.101110; 011000/D 4 and h.000000; 010001/D 2.

Question 299 Let v and w be words in Bn, and let 0 be the all-0 word. Explain why

h.v ; w/ equals the number of 1s in v ˚ w . Then, explain why h.v ; w/ D h.0; v ˚ w/.

The Hamming distance h satisfies the mathematical properties of a metric. These prop-

erties are as follows.

M1 For each v ; w 2 Bn we have h.v ; w/ > 0. In addition, h.v ; w/ D 0 if and only if

v D w .

M2 For each v ; w 2 Bn we have h.v ; w/ D h.w ; v/.

M3 For each u; v ; w 2 Bn we have h.u; w/ 6 h.u; v/C h.v ; w/.

The familiar Euclidean distance formula used in algebra and calculus as well as the ab-

solute value function are other examples of metrics. Properties M1 and M2 follow easily
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from the definition of Hamming distance. Property M3, known as the triangle inequality,

follows by component-wise analysis. See Exercise 2.

The weight of a word in Bn is the number of 1s in that word. We use wt.v/ to denote

the weight of v . For example, wt.010111/ D 4.

Question 300 Express wt.v/ in terms of the Hamming distance metric. Then express

h.v ; w/ in terms of the weight function.

Spheres

At the beginning of this section, we claimed that the Hamming .7; 24; 3/ code had the

property that each word in B7 is within distance 1 of exactly one codeword. The concept

of a sphere helps us visualize and analyze this idea.

For a given word v 2 Bn and a nonnegative integer r , the sphere of radius r centered

at v contains all words in Bn within distance r of v . That is,

Sr.v/ WD
n

w 2 B
n W h.v ; w/ 6 r

o

:

For example, in B6 we have

S0.010111/ D f010111g
S1.010111/ D f010111; 110111; 000111; 011111; 010011; 010101; 010110g:

Also notice that S6.010111/ D B6 because any word in B6 is within distance 6 of any

other word.

Question 301 How many words are in S2.010111/? In S3.010111/? Count them by a

method other than listing them all out.

Figure 7.3 shows a partial visualization of the spheres of radius 1 around each codeword

of the Hamming .7; 24; 3/ code. Each of the three complete spheres shown contains its

corresponding codeword in bold as well as the the other seven words in B7 that are distance

1 from the codeword. Indeed, the 16 spheres of radius 1 partition the set B7 into 16 blocks.

We will prove this later.

Error-correcting capability

As we focus on how to construct a code in order to achieve certain guarantees on its error-

correcting abilities, we next seek to understand the relationship between the number of

errors a code can correct and the distance between codewords. Intuitively, the codewords

should be sufficiently “spread out” so that their corresponding spheres don’t overlap. The

method of decoding a message by replacing each word by the codeword closest to it is

called minimum distance decoding.

In the Hamming .7; 24; 3/ code of Table 7.3, the minimum distance between any two

codewords is 3. Proving so requires two things, namely

� checking that h.c1; c2/ > 3 for all distinct codewords c1 and c2, and

� finding two codewords that are exactly distance 3 apart.

The first part involves
�
16
2

�

D 120 pairs which is tedious but possible. Once accomplished,

the second part follows by observing, say, that h.0000000; 0010110/D 3.
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0110011

0110111
0110001

0111011

00100110100011

1110011

0110010

1000011

1000111
1000001

1001011

11000111010011

0000011

1000010

0111100

0111000
0111110

0110100

00111000101100

1111100

0111101

0101000

0101011

. . .
11011001011100

0001100

. . .

Figure 7.3. Some radius-1 spheres of the Hamming .7;24; 3/ code.

Given a binary code C, we say it has minimum distance d provided that d is the

minimum value of the Hamming distance between any two codewords:

d WD min
n

h.c; c0/ W c; c0 2 C and c 6D c0
o

:

We refer to a code using the triple

.length of codewords; number of codewords; minimum distance/:

So if C is a code on Bn with minimum distance d , we call it a .n; jCj; d / binary code,

where jCj is the size of the set C.

Once we know the minimum distance of a code, the following theorem tells us its

error-correcting capability.

Theorem 7.4.1 If C is a binary code and the minimum distance between any two code-

words is d , then C can correct up to
j

d�1
2

k

errors using minimum distance decoding.

Furthermore, this is best possible.

Proof: Assume that C is a code on Bn that has minimum distance d . Suppose the code-

word c 2 C is sent, the word v 2 Bn is received, and at most
j

d�1
2

k

errors are made in

transmission. This means that the distance between c and v satisfies

h.c; v/ 6

�
d � 1

2

�

;

so that v is in the sphere of radius
j

d�1
2

k

centered at the codeword c.
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We must show that this word v does not belong to any other sphere of radius
j

d�1
2

k

centered at any other codeword. To this end, let c0 be any codeword other than c. By as-

sumption, h.c; c0/ > d . By the triangle inequality, h.c; c0/ 6 h.c; v/C h.v ; c0/. Therefore

h.v ; c0/ > h.c; c0/ � h.c; v/

> d � h.c; v/ since h.c; c0/ > d

> d � d � 1

2
since h.c; v/ 6

�
d � 1

2

�

6
d � 1

2

D d C 1

2

>

�
d � 1

2

�

:

This proves h.v ; c0/ >
j

d�1
2

k

and so v does not belong to any sphere of radius
j

d�1
2

k

centered at a codeword other than c. This completes the proof that C can correct up to
j

d�1
2

k

errors. We defer the proof that this is best possible—that it cannot correct more

than this many errors—to Exercise 9.

Another way to state this theorem is: If C is a binary code and the minimum distance

between any two codewords is 2e C 1, then C can correct up to e errors using minimum

distance decoding.

Question 302 Consider the following code on B4:

C D f0000; 1100; 0110; 0011; 1111g:

What is its minimum distance? How many errors can it correct? Draw a diagram like

Figure 7.3 but containing all 16 words in B4 along with the five codeword spheres.

The sphere packing bound and perfect codes

We next derive a condition that will limit our search for so-called perfect codes signifi-

cantly. It involves a counting argument.

If C is a code on Bn, then the number of words in any sphere of radius e centered at a

codeword c is
e
X

iD0

 

n

i

!

because there are
�

n
0

�

words that differ from c in zero places,
�

n
1

�

words that differ from c

in exactly one place, and so on up to
�

n
e

�

that differ in exactly e places. (In Question 301,

your answers should have been
�

6
0

�

C
�
6
1

�

C
�

6
2

�

D 22 and
�
6
0

�

C
�

6
1

�

C
�

6
2

�

C
�

6
3

�

D 42,

respectively.) In Figure 7.3, each radius-1 sphere contains
�

7
0

�

C
�

7
1

�

D 8 words.

If the code corrects up to e errors, then the radius-e spheres centered at the codewords

are disjoint. Taken together, they cannot contain more than the whole set of words Bn.
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Therefore,

jCj �
e
X

iD0

 

n

i

!

6 2n or jCj 6 2n

Pe
iD0

�
n
i

� : (7.7)

This is called the sphere packing bound or sometimes the Hamming bound because it

limits the number of codewords based on the disjoint-spheres requirement. Any code for

which the sphere packing bound (7.7) holds at equality is a perfect code. The following

theorem is immediate.

Theorem 7.4.2 (sphere packing bound) If C is a perfect code on Bn that corrects up to e

errors, then
Pe

iD0

�
n
i

�

must be a power of 2. In that case, C contains
2n

Pe
iD0

�
n
i

� codewords.

Trivial and nontrivial codes

A code on Bn that corrects either 0 or n errors is a trivial code. Any other code is a non-

trivial code. The following question asks you to explain why trivial codes deserve their

name.

Question 303 Define the following codes on B3:

C1 D f000; 001; 010; 100; 011; 101; 110; 111g
C2 D f000g:

Explain why the first one corrects zero errors and the second corrects three errors. Then,

explain why both are useless for the purpose of transmitting information in the error-

correcting context.

Example: existence of a nontrivial perfect code

Can a nontrivial perfect code exist on B6?

Suppose one did. Theorem 7.4.2 implies that
Pe

iD0

�
6
i

�

is a power of 2 for some e

satisfying 1 6 e 6 5. (Remember, e D 0 and e D 6 correspond to trivial codes.) Since

�
6
0

�

C
�

6
1

�

D 7
�
6
0

�

C
�

6
1

�

C
�

6
2

�

D 22
�
6
0

�

C
�

6
1

�

C
�

6
2

�

C
�
6
3

�

D 42
�
6
0

�

C
�

6
1

�

C
�

6
2

�

C
�
6
3

�

C
�

6
4

�

D 57
�
6
0

�

C
�

6
1

�

C
�

6
2

�

C
�
6
3

�

C
�

6
4

�

C
�

6
5

�

D 63

and none of these is a power of 2, we have a contradiction. No nontrivial perfect code on

B6 exists.

Question 304 Might a nontrivial perfect code on B15 exist according to Theorem 7.4.2?

If so, how many errors would it correct?

Necessary conditions for perfect 1-error-correcting binary codes

If a perfect binary code can correct e D 1 error, then by Theorem 7.4.2 it contains

2n

�
n
0

�

C
�

n
1

� D 2n

1C n
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codewords, where 1 C n is a power of 2. Writing 1C n D 2m for some integer m gives

n D 2m � 1. Therefore if a perfect 1-error-correcting code exists, it must exist in B2m�1

where m is some integer. In that case the number of codewords is

2n

1C n
D 22m�1

1C 2m � 1
D 22m�m�1:

This code would need to achieve a minimum distance of d D 2e C 1 D 3 between

codewords. If it exists, we shall refer to this as a .2m � 1; 22m�m�1; 3/ binary code. When

m D 3, we have the familiar .7; 24; 3/ binary code.

Construction of perfect 1-error-correcting binary codes

We now show that .2m � 1; 22m�m�1; 3/ binary codes exist for all m > 2 and therefore

prove that the necessary conditions just derived are also sufficient. These codes will be

perfect 1-error-correcting codes. We will construct them using a matrix.

Linear codes and generator matrices

A linear code on Bn is a vector subspace of Bn. Equivalently, a linear code on Bn is the

set of all linear combinations of the rows of a k � n matrix, each entry being 0 or1. That

matrix is called a generator matrix for the code.

An examination of the Hamming .7; 4; 3/ code of Table 7.3 reveals that if we chop off

the last three digits of each codeword, a list of all 16 four-digit binary numbers remains.

To construct this code via linear combinations of the rows of a matrix, then, it makes sense

to start with the matrix

G7 WD

0

B
B
@

1 0 0 0 � � �
0 1 0 0 � � �
0 0 1 0 � � �
0 0 0 1 � � �

1

C
C
A

where the �’s are to be determined. The presence of the 4 � 4 identity matrix makes en-

coding easy.

Question 305 Assuming the �’s in the matrix G7 have been correctly determined, how

would you write 1011010 as a linear combination of the rows of G7? How would you write

0010110?

Now we must determine the �’s so the code can correct up to one error. The relationship

between error correction and minimum distance described in Theorem 7.4.1 tells us that

the distance between any two codewords must be at least 3. So, it not only has to be the

case that the distance between any two rows of G7 is at least 3 (for each row will be one of

the codewords), the same has to be true for all 16 possible linear combinations of the rows.

First observe that no row of G7 can have fewer than three 1s. This is because 0 D
0000000 is a codeword (it equals the all-0 linear combination) and the distance between 0

and any word equals the number of 1s in that word. Therefore in each row, at least two of

the three �’s must be 1s. So the � � � portion of each row of G7 must be chosen from 011,

101, 110, and 111.

Question 306 Why is the minimum distance requirement not satisfied if the same 3-digit

number occupies the � � � portion portion of two different rows of G7?
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This forces us into using each of 011, 101, 110, and 111 exactly once. We choose

G7 WD

0

B
B
@

1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

1

C
C
A

: (7.8)

But if we generate all 16 possible codewords via linear combinations of these four rows,

will we achieve the minimum distance requirement? The following theorem equates the

problem of finding the minimum distance with the (typically easier) problem of finding a

nonzero linear combination of minimum weight. We postpone the proof until we illustrate

how to apply it to the matrix G7 shown above.

Theorem 7.4.3 If G is a 0-1 matrix and L is the set of all linear combinations of the rows

of G, working modulo 2, then the minimum Hamming distance between any two elements

of L equals the minimum weight of a nonzero element of L.

Here is how the theorem allows us to conclude that the code generated by the matrix

G7 has minimum distance 3: it is enough to consider every possible nonzero linear com-

bination of the rows of G7 and make sure that the result is a word of weight at least 3. A

representative linear combination looks like

a1R1 ˚ a2R2 ˚ a3R3 ˚ a4R4

where Ri is row i of G7 and each of the coefficients ai is 0 or 1. Actually, the latter re-

quirement effectively means that each row is either “in” (coefficient 1) or “out” (coefficient

0) of the linear combination. (This is a convenience enjoyed only by binary codes. We shall

see examples of non-binary codes in Section 7.5.)

First observe that each row (i.e., linear combination with exactly one coefficient equal

to 1) has weight at least 3. For any linear combination involving two rows, there will be

two 1s among the first four columns and at least one 1 among the last three, so the weight

is at least 3. For any involving three or more rows, there will be at least three 1s among the

first three columns, and hence the weight will be at least 3. Therefore all nonzero linear

combinations produce elements of weight at least 3. Observing that the first row of G7 has

weight exactly 3, we conclude that the minimum weight of a nonzero linear combination

is 3. By the theorem, the minimum distance between any two codewords is 3.

Question 307 Define

G WD

0

@

1 0 0 1 0

0 1 0 0 1

0 0 1 1 1

1

A :

The code generated by linear combinations of its rows has 23 D 8 codewords. What is the

minimum distance between codewords? How many errors can this code correct?

Proof of the theorem
Proof of Theorem 7.4.3: Assume A is a 0-1 matrix and L is the set of all linear combina-

tions of its rows, working modulo 2. Let d be the minimum Hamming distance between

any two elements of L, and let w be the minimum weight of a nonzero element of L. We

must show that w D d .
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Let u; v 2 L satisfy h.u; v/ D d . Then wt.u ˚ v/ D d as well (see Question 300).

Since L is closed under addition, u ˚ v is also an element of L. This implies w 6 d

because u˚ v is a nonzero element of L having weight d , and w is the minimum weight

over all nonzero elements of L.

For sake of contradiction, assume that w < d . Then there exists a nonzero element

x 2 L for which wt.x/ D w < d . But then h.0; x/ D w < d and so there are two

elements in L that are closer than d units apart. This contradicts the fact that d is the

minimum distance. Therefore w > d and this completes the proof.

The Hamming codes

The generator matrix construction of the Hamming .7; 24; 3/ code easily generalizes to

build perfect .2m � 1; 22m�m�1; 3/ binary codes. These codes are called Hamming codes

after their founder Richard Hamming.

Theorem 7.4.4 (Hamming) For any integer m with m > 2, there exists a perfect .2m �
1; 22m�m�1; 3/ code. This code is a 1-error-correcting code on B2m�1 containing 22m�m�1

codewords.

Proof: Assume m > 2. Define the matrix

G WD Œ I j A �

where

� I is the .2m �m� 1/ � .2m �m� 1/ identity matrix.

� A is any .2m �m � 1/ �m matrix whose rows contain all those words in Bm with at

least two 1s.

Notice that Bm contains one word with zero 1s and m words with exactly one 1, so indeed

2m �m � 1 words in Bm have at least two 1s.

We claim that G generates a perfect .2m�1; 22m�m�1; 3/ code. The rows of G contain

2m � m � 1 C m D 2m � 1 entries and hence are in B2m�1. Because of the presence of

the .2m �m � 1/ � .2m �m � 1/ identity matrix on the left of G, each of the 22m�m�1

possible linear combinations of rows of G produces a different codeword, so there are

indeed 22m�m�1 codewords in this code.

We now show that every nonzero codeword has weight at least 3. Any codeword that is

a single row of G has one 1 among the first 2m �m� 1 entries and at least two 1s among

the remaining m entries. Its weight is at least 3.

Any codeword formed by adding two rows of G will have two 1s among the first

2m � m � 1 entries and at least one 1 among the remaining m entries. The latter is true

because all the rows of A are different. The weight of this codeword is also at least 3.

Finally, any codeword formed by adding together three or more rows of G will have at

least three 1s among the first 2m �m� 1 entries. Its weight is at least 3.

Therefore every nonzero codeword has weight at least 3. Any row of A that has ex-

actly two 1s will correspond to a row of G having exactly three 1s, so in fact the min-

imum weight of any nonzero codeword is 3. Theorem 7.4.3 implies that the minimum

distance between any two codewords is 3. We have created a binary code with parameters

.2m � 1; 22m�m�1; 3/. It is a perfect code because it achieves the sphere packing bound.
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Question 308 Write a generator matrix for the Hamming .15; 211; 3/ code.

Summary

An error-correcting code provides a method for accurate communication despite errors in

transmission. We showed how to construct a family of binary codes using linear combina-

tions of the rows of a generator matrix. These codes are perfect 1-error-correcting codes

because, under the assumption that at most one error is made in the transmission of each

codeword, they provide for completely accurate communication. Such codes exist exactly

when the length of the codewords is one less than a power of two: 3, 7, 15, 31, 63, and so

on.

Exercises

1. Decode the following 4� 4 “image” of grayscale values sent according to the 1-error-

correcting code of Table 7.3.

0100111 1110110 1010101 1011001

0100111 1000001 1000000 0111101

1101001 0101011 0101010 1110000

0110011 0110010 0110010 0001111

Assuming that at most one error was made in transmitting each codeword, how many

errors were actually made?

2. Prove the triangle inequality for the Hamming distance metric.

3. In B8, find the number of words in S4.01110110/. Then find the number of words v

for which wt.01110110˚ v/ 6 4.

4. Define the following operation on words in Bn:

v � w WD .v1w1; v2w2; : : : ; vnwn/

where the products are taken modulo 2.

Prove: If v ; w 2 Bn, then wt.v ˚ w/ D wt.v/C wt.w/� 2wt.v � w/.

5. Prove that wt.v ˚ w/ > wt.v/ �wt.w/. Also, when does equality hold?

6. Prove that no perfect code on Bn that can correct up to n � 1 errors can exist.

7. You wish to use a perfect 1-error-correcting binary code to send a high-resolution im-

age, where each pixel’s grayscale value ranges from 0 to 65535. What is the smallest

Hamming code you can use? How long is each codeword? What percentage of its

codewords will you use to encode the grayscale values?

8. For each of the following generator matrices, how many errors can the resulting linear

code correct? Support your answer.

(a)

0

B
B
@

1 0 0 0 1 1

0 1 0 0 0 1

0 0 1 0 1 0

0 0 0 1 0 0

1

C
C
A
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(b)

0

@

1 0 0 1 0 0 0

0 1 0 0 1 1 0

0 0 1 1 0 1 1

1

A

9. Finish the proof of Theorem 7.4.1 by showing that the code therein cannot correct

more than
j

d�1
2

k

errors using minimum distance decoding. (Hint: One way to do this

is to show that if the radius of the spheres were any larger, they would then “overlap.”)

10. Suppose C is a code on Bn that corrects e errors, where jCj > 2. Prove that e < n�1
2

.

11. Here is a decoding method for the Hamming .7; 24; 3/ code. Define

d1 WD 0001111 d2 WD 0110011 d3 WD 1010101:

When you receive the word x, construct c WD .x �d1; x �d2; x �d3/ where the dot prod-

ucts are computed modulo 2. This c is a 3-digit binary number, but when converted to

decimal it identifies the position in x at which an error occurs.

For example, let x D 1001110. Then c D .1; 1; 0/ and 110 in binary is 6 in decimal.

An error occurs in position 6 of x, and indeed 1001100 is the correct codeword. As

another example, when x D 0110011 then c D .0; 0; 0/ and 000 in binary is 0 in

decimal—no error occurs because 0110011 is a codeword.

Justify this method of decoding. You may want to first prove that if x is a codeword

then c D .0; 0; 0/. Then prove if x is not a codeword, then c identifies the position of

the error.

Travel Notes

According to the account of Thompson (1983), Hamming’s frustration in 1947 with a com-

puter at Bell Telephone Laboratories provided the impetus for his discovery. It seems the

computer, upon detecting an error during the course of running one of Hamming’s pro-

grams, would completely abort the calculation with no chance for recovery. After cursing

the computer, Hamming thought, “If the machine can detect an error, why can’t it locate

the position of the error and correct it?” The field of error-correcting codes was born.

Linear codes are often referred to as .n; k; d/ codes, where k is the rank of the generator

matrix. Thus the Hamming .7; 24; 3/ code is also called the Hamming .7; 4; 3/ code or

sometimes just the Hamming .7; 4/ code.

7.5 Codes from designs, designs from codes

The Hamming codes of the last section are perfect, 1-error-correcting binary codes. In

this section we address two main questions. One, are there any other perfect codes? Two,

are there any codes (whether perfect or not) that correct more than one error? In answering

these questions we will see the close relationship between combinatorial designs and error-

correcting codes.
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Symmetric designs generate codes

Consider again the symmetric .7; 3; 1/ design and let A1 be its incidence matrix, which we

showed at the beginning of Section 7.2:

A1 D

0

B
B
B
B
B
B
B
B
B
@

1 1 1 0 0 0 0

1 0 0 1 1 0 0

1 0 0 0 0 1 1

0 1 0 1 0 1 0

0 1 0 0 1 0 1

0 0 1 1 0 0 1

0 0 1 0 1 1 0

1

C
C
C
C
C
C
C
C
C
A

:

Make a code C1 on B7 by taking the rows of this matrix as our codewords. (We are not

treating A1 as a generator matrix; the rows of A1 alone form the code.) Notice that the

Hamming distance between any two rows of A1 is exactly 4. Therefore C1 has minimum

distance 4 and so it corrects up to
�

4�1
2

˘

D 1 error by Theorem 7.4.1.

This does not represent improvement over our existing knowledge because we already

know a perfect 1-error-correcting code on B7: the Hamming .7; 24; 3/ code. But don’t let

the term “perfect” cast a pall on any non-perfect code. In certain situations the code C1 may

be preferable to the Hamming code. If we use C1 and receive 1101111, we know that more

than one error has occurred because this word is not within distance 1 of any of the seven

codewords shown in A1. (Geometrically, it is not in any sphere centered at a codeword.) In

that case we can ask for re-transmission.3 The Hamming .7; 24; 3/ code, since it is perfect,

places every word in B7 within distance 1 of a unique codeword. If two or more errors

are made, the Hamming code will definitely decode incorrectly. If the same happens when

using C1, we might be able to detect it.

Question 309 How many words in B7 are contained among the seven radius-1 spheres

centered at the rows of A1? How many words, then, are not contained in any of these

spheres?

But watch what happens when we create a code from the incidence matrix of a bigger

design, in this case a symmetric .13; 4; 1/ design. That code is on B13 and contains 13

codewords. Without writing down the incidence matrix, we can show that this code has

minimum distance 6. Because symmetric designs are linked (see Theorem 7.2.3), any two

rows of the matrix share a 1 in exactly � D 1 place. Each row contains four 1s (because

r D k D 4), so that means that there are k � � D 3 places in which the first row has a

1 and the second row has a 0; it also means that there are k � � D 3 places in which the

second row has a 1 and the first row has a 0. Therefore, the Hamming distance between

these two rows is 2.k � �/ D 6. This holds for any pair of rows so the distance between

any two codewords, and therefore the minimum distance, is 6. By Theorem 7.4.1, this code

can correct up to
�

d � 1

2

�

D
�

6 � 1

2

�

D 2

errors. Now we are getting somewhere. It is not a perfect code, but it corrects one more

error than the family of Hamming codes.

3This is desirable in applications involving DVD players and other personal electronic devices where, unlike
the space probe example, re-transmission costs are low.
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This same analysis holds in general. The minimum distance between any two rows of

the incidence matrix of a symmetric .v; k; �/ design is d WD 2.k � �/. Theorem 7.4.1

shows that the code corrects up to

�
d � 1

2

�

D
�

2.k � �/ � 1

2

�

D
�

k � � � 1

2

�

D k � �� 1

errors.

Theorem 7.5.1 If A is the incidence matrix of a symmetric .v; k; �/ design, then the rows

of A form a code on Bv that contains v codewords and has minimum distance 2.k � �/.

This code corrects up to k � �� 1 errors.

Perfect binary codes generate designs

Now that we have seen how certain designs produce codes, let’s examine a way in which

codes produce designs. In this case, we show how to build a Steiner triple system from a

Hamming code. Since we know how to use a generator matrices to construct Hamming

codes, this result gives us a new method of construction for Steiner triple systems. The

proof is especially enlightening because it shows the interplay between the 1-balanced

property of a design and the radius-1 sphere packing property of a perfect binary code.

Theorem 7.5.2 If C is a Hamming .2m � 1; 22m�m�1; 3/ code with m > 3, and A is the

matrix whose columns contain the weight-3 codewords in C, then A is the incidence matrix

of a Steiner triple system on 2m � 1 varieties.

Proof: Assume C and A are as stated in the hypothesis, and let D be the design that

has A as its incidence matrix. An STS.2m � 1/ design is a .2m � 1; 3; 1/ design. Once we

demonstrate that the design D is incomplete and has v D 2m � 1, k D 3, � D 1, our

proof will be complete. This is because any incomplete, uniform, and balanced design is

necessarily regular and therefore a BIBD. (See Exercise 8 of Section 7.1.)

Firstly, we observe that D is 3-uniform (i.e., k D 3) because each column of A, being a

weight-3 codeword, corresponds to a size-3 block of D. Next, we see that D is incomplete

because m > 3 implies v D 2m � 1 > 7 > 3 D k. Now, each codeword is an element

of B2m�1 so the columns of A contain 2m � 1 entries. This is not yet enough to show that

v D 2m � 1 because we need to make sure that all varieties appear in D. In other words,

we need to rule out the possibility of an all-zero row in A. This will follow from the proof

that � D 1, which is the most interesting part.

To prove � D 1, let i and j be two varieties of the design D. We must prove that i and

j appear together in exactly one block of D. Equivalently, we need to show that A contains

exactly one column in which row i and row j share 1. But each column of A is a weight-3

codeword of C, so we just need to show that C contains exactly one codeword with a 1 in

positions i and j .

Define vij to be that word in B2m�1 having 1 in positions i and j , and 0 in all other

positions. This is a weight-2 word so it is not a codeword in C. But C is a perfect code

with minimum distance d D 3, so vij is within a radius-1 sphere of exactly one codeword,

say c. This must be a weight-3 codeword, for a weight-2 word is only within distance 1 of

a weight-1 or weight-3 word, and C contains no weight-1 codewords. In addition, c must

have 1 in positions i and j , for the only way to change vij into a weight-3 word is to
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change a 0 to a 1. This completes the demonstration that � D 1 and hence the proof of the

theorem.

Exercise 1 concerns a generalization of this result to perfect e-error-correcting binary

codes.

The only perfect binary codes are...

At this point we mention the first of two truly astonishing results regarding perfect codes.

The first concerns perfect binary codes. The Hamming codes comprise a family of perfect

1-error-correcting binary codes with parameters .2m � 1; 22m�m�1; 3/. Recall the sphere-

packing bound (7.7) which places an upper bound on the number of codewords in an e-

error-correcting code on Bn, namely

jCj 6 2n

Pe
iD0

�
n
i

� :

Perfect binary codes are those that meet the sphere packing bound. So when m is an integer,

m > 2, the pair .n; e/ D .2m � 1; 1/ implies that the denominator
Pe

iD0

�
n
i

�

is a power of

2 and hence that the upper bound is an integer.

Are there any other such pairs .n; e/? Surprisingly there are only two: .n; e/ D .23; 3/

and .n; e/ D .90; 2/.

Question 310 Verify that
Pe

iD0

�
n
i

�

equals a power of 2 in each case. If the corresponding

perfect codes exist, how many codewords does each have?

It turns out that a code exists having the first set of parameters. This code, now called the

Golay .23; 212; 7/ code, was published by Marcel Golay in 1949. However, no code exists

having the second set of parameters. We will justify both of these assertions, but before we

do so we mention the first surprising result. It says that the only possible parameters for

perfect binary codes are those of the Hamming and Golay codes.

Theorem 7.5.3 The only perfect 1-error-correcting binary codes that exist are codes with

parameters .2m � 1; 22m�m�1; 3/. The only perfect 3-error-correcting binary code that

exists is the Golay .23; 212; 7/ code. No other perfect e-error-correcting binary codes exist

for any value of e.

A note of clarification is in order. A set of parameters .n; jCj; d / does not necessarily

determine a unique code. There are examples of nonlinear codes (which are those unable

to be created via the generator matrix method) with the same parameters as the Hamming

.2m�1; 22m�m�1; 3/ codes. But the Golay code is indeed the only .23; 212; 7/ binary code.

So this theorem tells us that a perfect binary code must either have the same parameters

as one of the Hamming codes or else it must be the Golay .23; 212; 7/ code. There are no

other possibilities.

The Golay .23; 212; 7/ code

We now sketch one possible construction method for Golay’s perfect 3-error-correcting bi-

nary code. We begin by constructing the so-called extended Golay code G24 which is a code

on B24 with parameters .24; 212; 8/. This code, though not a perfect code, is interesting in

its own right because it contains a large Steiner system.
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( )
Figure 7.4. The generator matrix for the extended Golay code G24.

First we define a generating matrix for G24. It is the 12 � 24 matrix shown in Figure

7.4 and can be abbreviated as

G24 D

0

B
B
B
@

1 0
::: I11

::: A11

1 0

0 0 � � � 0 1 1 � � � 1

1

C
C
C
A

(7.9)

where I11 is the 11 � 11 identity matrix, and A11 is the incidence matrix of a symmet-

ric .11; 6; 3/ design. The latter is the complement of a symmetric .11; 5; 2/ design; see

Exercise 10 of Section 7.1.

It takes some work to show that the minimum distance is 8 for the code generated by

the matrix G24. By appealing to Theorem 7.4.3, it is enough to show that every nonzero

codeword has weight at least 8. A glance at G24 shows that each of the first 11 rows has

weight 8 while the last row has weight 12. Exercise 2 asks you to prove that the sum of any

two rows has weight at least 8. In fact, one way to attack the problem of determining the

minimum weight is to count the number of codewords of each possible weight. It turns out

that among the 212 codewords in G24 there are only five different weights, as shown in the

table below. For a proof of this and some other results mentioned below, see MacWilliams

& Sloane (1978).

weight w 0 8 12 16 24

# codewords c with wt.c/ D w 1 759 2576 759 1

Table 7.4. The weight distribution of codewords in G24.

Question 311 What rows of G24 would you add to construct the one codeword of weight

24?

Now that we know G24 to be a .24; 212; 8/ binary code, we mention two results that we

also state without proof. First, if we delete any one column of G24, the remaining 12 � 23

matrix is a generating matrix for a .23; 212; 7/ code. We know such a code to be perfect

by our discussion in the last subsection. It is known as the Golay code G23. Moreover, it is

unique.



“master” — 2010/9/20 — 12:30 — page 313 — #331
i

i

i

i

i

i

i

i

7.5. Codes from designs, designs from codes 313

Theorem 7.5.4 The Golay code G23 is a perfect 3-error-correcting binary code with pa-

rameters .23; 212; 7/. Moreover, any other binary code with these parameters is equivalent

to the Golay code.

Second, the weight-8 codewords in G24 produce a S.5; 8; 24/ Steiner system. Recall

that an S.5; 8; 24/ design is a 5-.24; 8; 1/ design, and so that each 5-subset of varieties ap-

pears in exactly one of the 759 blocks of this design. This would be a large and complicated

design to construct without help from coding theory.

Theorem 7.5.5 If A is the matrix whose columns are the weight-8 codewords of the Golay

code G24, then A is the incidence matrix of an S.5; 8; 24/ design.

No perfect code on B
90 exists

Though .n; e/ D .90; 2/ satisfies the sphere packing bound, we now prove that no perfect

2-error-correcting code on B90 exists. For sake of contradiction, assume that such a code

exists and call it C. It would be a .90; 278; 5/ code, for the sphere packing bound implies it

contains
290

P2
iD0

�
90
i

� D
290

4096
D 290

212
D 278

codewords and has minimum distance d D 2eC 1 D 5.

Without loss of generality, assume that 0 2 C. Since C has minimum distance 5, every

nonzero codeword has weight at least 5. Moreover, C must contain some weight-5 code-

words. Our strategy for arriving at a contradiction involves constructing a particular set

of weight-3 words and then examining how the spheres centered at weight-5 codewords

partition this set.

To that end, consider the following 88 words in B90:

w3 WD 1 1 1 0 0 � � � 0 0

w4 WD 1 1 0 1 0 � � � 0 0

w5 WD 1 1 0 0 1 � � � 0 0
:::

:::
:::

:::
:::

:::
: : :

:::
:::

w89 WD 1 1 0 0 0 � � � 1 0

w90 WD 1 1 0 0 0 � � � 0 1

That is, for i D 3; 4; 5; : : : ; 90, word w i contains only 0s except for 1s in the first two

positions as well as in position i .

Let W D
˚

w3; w4; w5; : : : ; w90
	

. Consider two words in W equivalent if they belong

to the same radius-2 sphere centered at a codeword of C. This is an equivalence relation

on W because C is a perfect code: every word in B90 is in exactly one sphere centered at a

codeword.

Question 312 Why must every word in W be in a sphere centered at a weight-5 codeword?

In other words, why will no word in W be in a sphere centered at a codeword of weight

other than 5?

Since an equivalence relation induces a partition, let us examine each block of this

partition of W . Consider the block containing w3. Let c 2 C be the (unique) weight-5

codeword such that h.c; w3/ D 2. Since c has weight 5 and is distance 2 from w3, this
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c must have a 1 in the same positions that w3 does (namely, the first three positions) and

then a 1 in two other positions. For sake of concreteness, let’s say c has a 1 in positions 10

and 56.

Question 313 Show then that h.c; w10/ D 2 and h.c; w56/ D 2. Also, explain why all

other w i have h.c; w i / > 2.

It follows that the block of the partition containing w3 has size 3. Indeed this argument

applies not just to w3 but to any w i 2 W , and demonstrates that every word in W is in a

size-3 block of the partition. But herein lies our contradiction, for a size-88 set partitioned

into blocks of size 3 would involve 88=3 blocks. This rules out the possibility of a perfect

.90; 278; 5/ binary code.

Theorem 7.5.6 No perfect .90; 278; 5/ binary code exists.

Ternary and other codes

What about non-binary codes? Can we construct larger codes that have better error-correcting

properties? Are more perfect codes possible? We now generalize to non-binary codes.

Ternary codes

First let’s consider an example of a ternary code, which is a code in which each digit is 0,

1, or 2. Consider the generator matrix

G D
�

1 0 2 2

0 1 2 1

�

:

As in the case of a binary code, we construct the code by finding all possible linear combi-

nations of the rows of G. A generic linear combination is

a.1; 0; 2; 2/˚ b.0; 1; 2; 1/

where a; b 2 f0; 1; 2g. The notation a.1; 0; 2; 2/, for example, indicates component-wise

scalar multiplication, modulo 3. The˚ operation indicates component-wise addition mod-

ulo 3. For example, when a D 2 and b D 1 we have

2.1; 0; 2; 2/˚ 1.0; 1; 2; 1/D .2; 0; 1; 1/˚ .0; 1; 2; 1/D .2; 1; 0; 2/:

Question 314 Find all nine codewords in this code generated by the matrix G.

This code is an example of a .4; 32; d / ternary code, where d is the minimum distance

between two codewords. The Hamming distance between two words still equals the num-

ber of components in which the two words differ, and the weight of a word still equals the

number of nonzero entries. For example, h.1022; 0121/D 3 and wt.0102/ D 2.

Question 315 What is the minimum distance for the code generated by the matrix G

shown just above?

In addition, for a linear code such as the one in the current example, its minimum

distance still equals the minimum weight among the nonzero codewords. Indeed, most of

the results of the last section that concern binary codes can be extended to ternary (and

other) codes with little modification.
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Finite fields and q-ary codes

For those familiar with both abstract and linear algebra, binary codes are codes over GF.2/

and ternary codes are codes over GF.3/. In general, a q-ary code is a subset of the vector

space F n
q , where Fq WD GF.q/ is a finite field on q elements. Further, the code is linear if

it is a subspace of F n
q . It is well known that a field on q elements exists if and only if q is

a power of a prime. Moreover, if a finite field on q elements exists, then it is unique up to

isomorphism. The field GF.q/ is the Galois field of order q.

If p is a prime, then the field GF.p/ is isomorphic to the integers modulo p. So, for

example, GF.2/ and GF.3/ behave like the integers modulo 2 and modulo 3, respectively.

When we write Bn in this section and the previous one, we really mean F n
2 .

It is possible to extend Hamming’s perfect 1-error-correcting binary codes that we con-

structed in Section 7.4 to perfect 1-error-correcting q-ary codes for any q that is a power of

a prime. This entire family of 1-error-correcting codes is given the name Hamming codes.

The only perfect codes are...

With the door now open to non-binary codes comes the possibility of more perfect codes

than the few we already know. But herein lies the second astonishing result. There is only

one more perfect code, and it is a ternary code with parameters .11; 36; 5/ that was also

discovered by Golay. The following theorem summarizes the work of several researchers

working on the existence and uniqueness questions surrounding perfect codes.

Theorem 7.5.7 If C is a perfect code over a finite field, then exactly one of the following

is true of C.

� It is a 1-error-correcting code that has the same parameters as one of the Hamming

codes.

� It is equivalent to the 2-error-correcting Golay .11; 36; 5/ ternary code.

� It is equivalent to the 3-error-correcting Golay .23; 212; 7/ binary code.

No other perfect codes exist.

Summary

This section introduced the interplay between designs and codes. We saw first that sym-

metric designs can be used to construct (usually non-perfect) error-correcting codes. We

then saw that the Hamming binary codes are a source of Steiner triple systems. Both of

these results are important because construction methods for symmetric designs and for

Hamming codes are well-studied.

We closed this section with the answer to a major existence question in combinatorics

and coding theory. Perfect codes are extremely rare and can only correct either one, two,

or three errors. If a perfect code does not have the same parameters as one of the Hamming

codes, then it must be either the 2- or 3-error-correcting Golay code.

Exercises

1. Let C be a perfect e-error-correcting code on Bn, where e is odd. Prove that if A is the

matrix whose columns are the weight-.2eC1/ codewords in C , then A is the incidence

matrix of an S.eC1; 2eC1; n/ Steiner system, that is, an .eC1/-.n; 2eC1; 1/ design.
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2. Let r and s be two different rows of the matrix G24. Prove that wt.r ˚ s/ > 8.

3. Prove that if C is a q-ary code containing codewords of length n that corrects up to e

errors, then

jCj 6 qn

Pe
iD0

�
n
i

�

.q � 1/i
:

(This is the general sphere-packing bound.)

4. Let A be the 7�16 matrix whose columns are the codewords of the Hamming .7; 24; 3/

code. Define A0 to be the 8 � 16 matrix obtained from A by adjoining an extra row,

where the entries in this row are determined so that each column of A0 contains an

even number of 1s. Prove that A0 is the incidence matrix of a 3-.8; 4; 1/ design.

5. Prove that in a linear binary code either every codeword has even weight or else half

of the codewords have even weight and half have odd weight.

Travel Notes

By the 1950s the Hamming and Golay codes were known, but it was not until the early

1970s that it was proven that these are the only perfect codes possible. Theorem 7.5.7

represents the work of at least three researchers: Van Lint, who laid significant groundwork;

Pless (1968), who proved that the Golay codes are unique; and Tietavainen (1973), who

finished the proof that no other perfect codes exist. The books of MacWilliams & Sloane

(1978) and Pless (1982) are classics and also treat the problem of decoding.
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C H A P T E R 8

Partially Ordered Sets

Partially ordered sets play a unifying role in combinatorial theory. So far we have studied

ideas such as inclusion-exclusion, partitions of a set, counting under equivalence, and the

chromatic polynomial of a graph in relative isolation. Our ultimate goal in this last chapter

is to show how each of these ideas can be studied using partially ordered sets.

First we introduce partially ordered sets, their terminology and basic properties, and

some important examples. We then prove two classical combinatorial results (Sperner’s

theorem and Dilworth’s theorem) and study the concept of the dimension of a partially

ordered set. To end our journey, we spend two sections studying the theory of Möbius

inversion. It is this theory that provides the unifying framework.

8.1 Poset examples and vocabulary

A partially ordered set, or poset, is a set together with a relation that is reflexive and tran-

sitive (like an equivalence relation) but antisymmetric (unlike an equivalence relation).

Definition 8.1.1 A partially ordered set or poset is an ordered pair P D .X; 6/ where X

is a nonempty set and 6 is a relation on X that is

� reflexive: if x 2 X , then x 6 x;

� antisymmetric: if x; y 2 X and x 6 y and y 6 x, then x D y; and

� transitive: if x; y; z 2 X and x 6 y and y 6 z, then x 6 z.

We sometimes say that X is ordered by 6 to mean that .X; 6/ is a poset. Sometimes we

refer to X as the ground set of the poset. Until we get to Sections 8.5 and 8.6, we assume

that the ground set is finite.

Using the symbol 6 to denote the relation makes it convenient to write x 6 y instead

of .x; y/ 2 6. However, there are sometimes advantages to working explicitly with the

ordered pairs in the relation. In that case, we typically write P D .X; R/ to denote the

poset so that x 6 y becomes .x; y/ 2 R. We use both notations interchangeably.

Be warned that the symbol 6 can be dangerous. When we write x < y we mean that

x 6 y and x 6D y, just as with ordinary less-than. We also use y > x to mean x 6 y, and

use y > x to mean x < y. But writing x 66 y does NOT necessarily mean that x > y, as

it would when comparing numbers using ordinary less-than-or-equal-to. It simply means

that x 6 y is false, i.e., the ordered pair .x; y/ is not in the relation. Likewise, x 6< y

means only that x < y is false and not necessarily that x > y.

317
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318 8. Partially Ordered Sets

Here is an everyday example of a poset. Imagine you are trying to rank a list of finalists

for the purposes of determining who to hire for a job. In this case the ground set X is the set

of candidates and the relation 6 describes your preferences among them. If you can rank

them in order from best to worst, then that is ideal. If not, then at least your ranking should

satisfy the antisymmetric and transitive properties. Antisymmetry means that whenever x

and y are different candidates, then you can’t simultaneously prefer x to y and prefer y to

x. Transitivity means that whenever you prefer x to y and also y to z, then you prefer x to

z. In other words, these two properties ensure logical consistency among your preferences.

Sets ordered by inclusion

Any collection of sets ordered by the is-a-subset-of (�) relation is a poset. For example,

consider the set of all subsets of Œ2�, namely

2Œ2� D
˚

;; f1g; f2g; f1; 2g
	

:

The � relation on this set is the following set of nine ordered pairs:
n
�

;; ;
�

;
�

;; f1g
�

;
�

;; f2g
�

;
�

;; f1; 2g
�

;
�

f1g; f1g
�

;
�

f1g; f1; 2g
�

;

�

f2g; f2g
�

;
�

f2g; f1; 2g
�

;
�

f1; 2g; f1; 2g
�
o

:

That is, .A; B/ is in the relation if and only if A � B .

The subset relation is reflexive because A � A for any set A. It is antisymmetric

because if A � B and B � A, then A D B . (In fact, this is the definition of set equality.)

It is also transitive because if A � B and B � C , then A � C . Any poset involving the�
relation is said to be ordered by inclusion.

The notation 2n denotes the subsets of Œn� ordered by inclusion. That is, 2n D .2Œn�;�/.

This poset is sometimes called a subset lattice. We define lattice later in this section.

Question 316 How many ordered pairs does the� relation on 2Œ3� have?

Integers ordered by divisibility
Given a positive integer n, the divisibility lattice is the set of positive divisors of n ordered

by the divisibility (is-a-divisor-of, or j ) relation. We denote this poset Dn. In other words,

if we define

Dn WD fd 2 Z W d > 0 and d jng
then Dn D .Dn; j/. For example, D18 D f1; 2; 3; 6; 9; 18g and so the divisibility relation

on this set is
˚

.1; 1/; .1; 2/; .1; 3/; .1; 6/; .1; 9/; .1; 18/; .2; 2/; .2; 6/; .2; 18/;

.3; 3/; .3; 6/; .3; 9/; .3; 18/; .6; 6/; .6; 18/; .9; 9/; .9; 18/; .18; 18/
	

:

Question 317 Write the ordered pairs in the divisibility relation on D15 and on D16.

In general, let x, y, and z be positive integers. Since xjx we have that j is reflexive.

Also, if xjy and yjx, then x D y. Finally, if xjy and yjz, then xjz so j is transitive. Each

of these is easily verified using the definition of “divides”: ajb means b D ka for some

integer k.

Question 318 Is the antisymmetric property true when x and y aren’t both positive? Give

a proof or counterexample.
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8.1. Poset examples and vocabulary 319

Total orders

Any set of real numbers ordered by less-than-or-equal-to is a poset. This is because x 6 x

for any real number x; if x 6 y and y 6 x then x D y; and if x 6 y and y 6 z,

then x 6 z. In fact, there is nothing “partial” about this partially ordered set. For any real

numbers x and y, either x 6 y or y 6 x is true.

A totally ordered set or total order is a poset .X; 6/ such that for each x; y 2 X , either

x 6 y or y 6 x is true. We define n WD
�

Œn�; 6
�

to be the set Œn� ordered by 6. As an

example, the 6 relation on Œ4� is

˚

.1; 1/; .1; 2/; .1; 3/; .1; 4/; .2; 2/; .2; 3/; .2; 4/; .3; 3/; .3; 4/; .4; 4/
	

:

As another example, the sets fag, fa; bg, fa; b; d g, fa; b; d; eg ordered by inclusion also

form a total order. The poset 23 is not a total order because f1g 6� f2; 3g and f2; 3g 6� f1g.

Question 319 How many ordered pairs are in the 6 relation on Œ5�? On Œ6�?

Covering and the Hasse diagram

A convenient way to visualize a poset is with its Hasse diagram. For example, the Hasse

diagrams of two subset lattices appear in Figure 8.1. In a Hasse diagram, we represent

{1,2,3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1} {2} {3} {4}

Æ

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

Æ

Figure 8.1. The subset lattices 2
3 and 2

4.

each element in the ground set by a symbol and then draw lines to indicate the relation. By

convention, x 6 y in the relation if and only if the following happens in the diagram: one,

x appears below y on the page; two, there is a path from x to y that “travels upwards.” The

latter condition allows us to use an economy of lines for then we don’t need to draw a line

for each ordered pair in the relation.

For example, in the subset lattice 24, we know f1g � f1; 2; 3; 4g. In its Hasse diagram,

we don’t need to connect these two elements by a line because we can travel upwards from

f1g along, for example, the path f1g � f1; 2g � f1; 2; 4g � f1; 2; 3; 4g.
The idea of covering governs which lines we draw. We say that y covers x provided

that x < y and there is no z for which x < z < y. The notation x <� y indicates that y

covers x. For example, f1; 3; 4g covers f1; 3g in the poset 24 because there is no set A for

which f1; 3g � A � f1; 3; 4g. On the other hand, f1; 2; 3g does not cover f2g.
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320 8. Partially Ordered Sets

Guidelines for drawing the Hasse diagram

To draw the Hasse diagram of the poset P D .X; 6/, follow these guidelines:

1. Represent each element of X by a symbol.

2. Draw a line connecting x and y only when x <� y.

3. If x <� y, then place y above x on the page.

For example, consider the poset .X; R/ with

X D fa; b; c; d; e; f g

R D
n

.a; a/; .a; c/; .a; d/; .a; e/; .a; f /; .b; b/; .b; d /; .b; e/; .b; f /;

.c; c/; .c; e/; .c; f /; .d; d/; .d; e/; .d; f /; .e; e/; .e; f /; .f; f /
o

:

Drawing one line per ordered pair .x; y/ with x 6D y would require a jumble of 12 lines.

As there are only six covering relations, namely

a <� c a <� d b <� d c <� e d <� e e <� f;

the Hasse diagram contains only six lines:

a b

c

e

d

f

Question 320 Draw the Hasse diagram of the poset with X D f1; 2; 3; 4; 5g and R con-

taining .i; i/ for i D 1; 2; : : : ; 5 as well as .1; 2/, .1; 4/, .2; 4/, .3; 2/, .3; 4/, and .5; 4/.

Hasse diagrams of the three divisibility lattices D16, D18, and D24 appear in Figure

8.2. Notice that D16 is a total order.

1
1

2

4

8

16

2 3

6
9

18

1

2 3

4 6

8 12

24

Figure 8.2. The divisibility lattices D16 , D18, and D24 .

Question 321 Find a divisibility lattice whose Hasse diagram is essentially the same as

that of D18.

Poset vocabulary

For the purpose of introducing the vocabulary and notation of posets, we use the poset

whose Hasse diagram appears in Figure 8.3.
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8.1. Poset examples and vocabulary 321

a b

c
e

d

f g h

i
j k

l m n

o

Figure 8.3. The Hasse diagram of a poset.

Comparable and incomparable

Let P D .X; 6/ be a poset. We say that x and y are comparable provided either x 6 y or

y 6 x. Failing that, x and y are incomparable and in that case we write x k y. Any two

elements in a poset are either comparable or incomparable. Since posets are reflexive, any

element is comparable to itself. In a total order, any two elements are comparable.

Comparable means, quite literally, “able to be compared.” It does not mean “equal” or

“similar” as it might in everyday English. Incomparable means “unable to be compared.”

In the poset shown in Figure 8.3, you should check that each of the following 10 state-

ments is true:

c 6 n b 6 j a k b g k n f < i

f <� i j > b b 6< k e 6 e e > e:

Chain and height

A chain of P D .X; 6/ is a nonempty subset of X containing pairwise comparable ele-

ments. That is, C is a chain of P provided ; � C � X and whenever x; y 2 C it follows

that either x 6 y or y 6 x. Among all possible chains of P, if C � is any chain of maximum

size, then we define the height of the poset to be jC �j.
For the poset of Figure 8.3, each of the following sets is a chain:

C1 D fhg
C2 D fa; d; g; i; lg
C3 D fc; ng:

Since C2 is a maximum-sized chain, we have height.P/ D jC2j D 5. Notice that

fa; d; g; i; mg is also a maximum-sized chain. The set ff; i; l; mg is not a chain because

l k m.

Antichain and width

An antichain of P D .X; 6/ is a nonempty subset of X containing pairwise incomparable

elements (ignoring reflexivity). That is, A is an antichain of the poset P provided ; � A �
X and whenever x; y 2 A with x 6D y, it follows that x k y. Among all possible antichains

of P, if A� is an antichain of maximum size, then we define the width of the poset to be

jA�j.
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322 8. Partially Ordered Sets

For the poset of Figure 8.3, each of the following sets is an antichain:

A1 D fhg
A2 D ff; g; h; og
A3 D fc; f; g; h; og
A4 D fb; c; d; e; f; og:

Since A4 is a maximum-sized antichain, we have width.P / D jA4j D 6. Notice that

fa; b; c; e; f; og is also a maximum-sized antichain. The set fe; f; g; h; og is not an an-

tichain because e 6 h.

Notice that any singleton subset of X can be considered either a chain or an antichain.

Question 322 Find the height and width of the posets 23 and 24. How many different

maximum-sized chains are there in each poset?

Extremal elements

An element x 2 X is maximal provided there is no y 2 X for which x < y. Informally,

an element is maximal provided there is “nothing above” it. We define a minimal element

in a similar manner. For the poset of Figure 8.3, the maximal elements are j , l , m, and n.

The minimal elements are a, b, c, e, f , and o.

An element x 2 X is maximum provided y 6 x for all y 2 X . Informally, an element

is maximum provided “everything else is below” that element. We define a minimum el-

ement in a similar manner. Notice that the existence of a maximum element implies that

every element in the poset is comparable to that element. The same holds for a minimum

element.

The poset of Figure 8.3, while having several maximal and minimal elements, has nei-

ther a maximum nor a minimum element. The concepts of maximal/maximum and mini-

mal/minimum are easily confused so take care in using them.

Question 323 Draw the Hasse diagram of a poset that is not a total order and that con-

tains an element x with the following properties: x is comparable to every element of the

poset, yet x is neither a maximum nor a minimum element.

If a poset has a maximum element, then that that element is unique. To see this, let P D
.X; 6/ be a poset and suppose x1 and x2 are maximum elements. Since x1 is maximum,

y 6 x1 for all y 2 X . In particular, x2 6 x1. Now since x2 is maximum, y 6 x2 for

all y 2 X . In particular, x1 6 x2. By antisymmetry of P , x2 6 x1 and x1 6 x2 imply

x1 D x2. Therefore a maximum element, if it exists, is unique. The same holds for a

minimum element.

Theorem 8.1.2 If a poset contains a maximum element, then there is only one such ele-

ment. The same holds true for a minimum element.

A poset needn’t have a maximum element or a minimum element, but it must have at

least one maximal element and at least one minimal element. We now prove this using a

constructive approach.

Theorem 8.1.3 If P D .X; 6/ is a poset, then it contains at least one maximal element

and at least one minimal element.
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Proof: We prove only the existence of a maximal element, as the argument for a minimal

element is entirely analogous. Let P D .X; 6/ be a poset and let x 2 X . One of two things

can happen:

� There is no y 2 X with x < y. If so, then x is maximal by definition. Stop.

� There is some y 2 X with x < y. If so, then x is not maximal but y might be. Start

the procedure over with y.

This eventually stops because P is finite. The element at which it stops is maximal.

Subposet

In the poset P of Figure 8.3, the subposet containing a, g, h, and j is the poset with ground

set fa; g; h; j g and whose relation contains those ordered pairs appearing in P that contain

only a, g, h, and j , namely

˚

.a; a/; .a; g/; .a; h/; .a; j /; .g; g/; .g; j /; .h; h/; .h; j /; .j; j /
	

:

We use P ŒY � to denote this subposet, where Y D fa; g; h; j g.
In general, let P D .X; R/ be a poset and let Y � X . Define

RŒY � WD
˚

.y; z/ W y; z 2 Y and .y; z/ 2 R
	

:

Then P ŒY � D
�

Y; RŒY �
�

is the subposet of P containing the elements of Y . We have not

provided proof that P ŒY � is indeed a poset but it is straightforward (Exercise 8).

Question 324 For the poset of Figure 8.3, draw the Hasse diagram of the subposet con-

taining the elements of fc; f; g; i; k; ng.

Another important example: partitions ordered by refinement

Recall from Section 2.3 that a partition of a set S is a collection of nonempty, disjoint sets

whose union is S . Let …n denote the set of partitions of Œn�. For example,

…3 D f123; 1:23; 2:13; 3:12; 1:2:3g
…4 D f1234; 1:234; 2:134; 3:124; 4:123; 12:34; 13:24; 14:23; 1:2:34;

1:3:24; 1:4:23; 2:3:14; 2:4:13; 3:4:12; 1:2:3:4g:

The notation 2:4:13 is an abbreviation for the partition
˚

f2g; f4g; f1; 3g
	

. Order doesn’t

matter in a partition, so 2:4:13 and 2:13:4 and 31:4:2 all represent the same partition of Œ4�.

Also, recall that the Bell number B.n/ counts the total number of partitions of an n-set. So

j…3j D B.3/ D 5 and j…4j D B.4/ D 15.

We say that one partition is finer than another partition provided that each block of

the first partition is a subset of a single block of the second partition. For example, 2:4:13

is finer than 24:13, and also 2:4:13 is finer than 2:134. We write 2:4:13 � 24:13 and

2:4:13 � 2:134 to indicate this. Every partition of Œ4� is finer than 1234, and 1:2:3:4 is

finer than any partition of Œ4�. In other words, 1234 is the maximum element and 1:2:3:4 is

the minimum element in the is-finer-than relation on …4.

Question 325 Is 4:123 finer than 14:23? Is 14:23 finer than 4:123?
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324 8. Partially Ordered Sets

1.2.3.4

1.2.34

12.34

1.3.24 2.4.13 2.3.14 3.4.12 1.4.23

2.134 1.234 13.24 3.124 14.23 4.123

1234

Figure 8.4. The poset …4 of partitions of Œ4� ordered by refinement.

In general, let S be a set and let P1 and P2 be partitions of S , say

P1 D fB1; : : : ; Brg
P2 D fC1; : : : ; Csg:

That is, P1 has r blocks and P2 has s blocks. We say P1 is finer than P2, and write

P1 � P2, provided that for each block Bi of P1, there exists some block Cj of P2 such that

Bi � Cj . The poset …n WD .…n;�/ is the set of partitions of Œn� ordered by refinement.

Exercise 9 asks for a proof that …n is indeed a poset. The Hasse diagram of the poset …4

appears in Figure 8.4.

Question 326 Draw the Hasse diagram of …3.

Lattices

We have already mentioned subset lattices and divisibility lattices so it is time to define

the concept of lattice. A lattice is a poset for which every pair of elements has both a least

upper bound and a greatest lower bound. Here is what these ideas mean.

Let P D .X; 6/ be a poset. Given elements x and y, we say that an element u is an

upper bound of x and y provided x 6 u and y 6 u. A least upper bound of x and y is

an upper bound u� for which u�
6 u for all upper bounds u of x and y. If a least upper

bound of x and y exists, then obviously it is unique. It is also called the join of x and y

and is denoted x _ y.

In the poset of Figure 8.3, consider the elements d and f . Each of i , l , and m is an

upper bound of d and f . Since i 6 l and i 6 m, we also see that i is a least upper bound

of d and f . That is, d _ f D i . However, i _ j doesn’t exist because there isn’t even an

element that is an upper bound of i and j .

Question 327 Draw the Hasse diagram of a poset containing elements x and y such that

these elements have at least one upper bound yet x _ y does not exist.

An element l is a lower bound of x and y provided l 6 x and l 6 y. A greatest lower

bound of x and y is a lower bound l� for which l 6 l� for all lower bounds l of x and y.
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If a greatest lower bound exists then it is unique. It is also called the meet of x and y and

is denoted x ^ y.

In the poset of Figure 8.3, we have g ^ h D a while g ^ e doesn’t exist.

Question 328 In that same poset, find d ^ i and i ^ h and b ^ c, if they exist.

Formally, a lattice is a poset P D .X; 6/ such that for each x; y 2 X , both x _ y and

x ^ y are defined. Lattices enjoy a great deal more structure than ordinary posets and are

important in many areas of mathematics.

Familiar lattices

The poset 2n, which we called the subset lattice, does indeed satisfy the definition of

lattice. In fact the join (_) and meet (^) operations are union ([) and intersection (\).

For example, in 24 we have f1; 3; 4g _ f2; 3g D f1; 3; 4g [ f2; 3g D f1; 2; 3; 4g and

f1; 3; 4g ^ f2; 3g D f1; 3; 4g \ f2; 3g D f3g. Also, f1; 3; 4g ^ f2g D ;.

The same is true for the poset Dn of positive divisors of n ordered by divides. In this

case, the join and meet operations are least common multiple and greatest common divisor,

respectively. For example, in D24,

3 _ 6 D lcm.3; 6/ D 6

4 _ 6 D lcm.4; 6/ D 12

8 ^ 3 D gcd.8; 3/ D 1

12 ^ 8 D gcd.12; 8/D 4:

Lattice properties

Any lattice has a maximum element and a minimum element. In addition, the join and meet

operations satisfy several properties.

Theorem 8.1.4 If P D .X; 6/ is a lattice, then P has a maximum element and a minimum

element. In addition, the operations _ and ^ satisfy the following properties for each

x; y; z 2 X:

� associative: x _ .y _ z/ D .x _ y/ _ z and x ^ .y ^ z/ D .x ^ y/ ^ z;

� commutative: x _ y D y _ x and x ^ y D y ^ x;

� idempotent: x _ x D x and x ^ x D x; and

� absorption: x _ .x ^ y/ D x and x ^ .x _ y/ D x.

Proof: Let P D .X; 6/ be a lattice. We prove the existence of a maximum element and the

first absorption law and leave the rest to Questions and Exercises.

Let x� be any maximal element guaranteed by Theorem 8.1.3. We prove that this x� is

in fact a maximum element by showing that y 6 x� for all y 2 X . Let y 2 X . Since P is

a lattice, the join y _ x� is defined. Define u WD y _ x�. Since u is an upper bound of y

and x�, we have y 6 u and x�
6 u. In fact, it follows that x� D u because if x� < u then

x� wouldn’t be maximal. But now y 6 u and u D x� imply y 6 x�. Therefore x� is a

maximum element.

We next prove the first absorption law and leave the remaining proofs to Exercise 8.1.4.

To prove x _ .x ^ y/ D x, we first define l WD x ^ y and then prove x _ l D x. Since

l is a lower bound of x and y, we have l 6 x and l 6 y. Now, x is certainly an upper
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326 8. Partially Ordered Sets

bound of x and l , because x 6 x and l 6 x. Can x and l have an upper bound u satisfying

u < x? No, because such an upper bound would satisfy x 6 u, which implies x 6 u < x

or x < x, a contradiction. Consequently x _ l D x and hence x _ .x ^ y/ D x.

Question 329 Prove that a lattice has a minimum element, and also prove the second

absorption law.

Summary

A poset is a set together with a relation that is reflexive, antisymmetric, and transitive.

Posets arise frequently because familiar relations such as less-than-or-equal-to, is-a-subset-

of, and divides possess these three properties. Important posets for combinatorial purposes

include the total order n, the subset lattice 2n, the divisibility lattice Dn, and partitions

ordered by refinement …n.

Exercises

1. Draw the Hasse diagram of D60.

2. Find, with proof, the height of the subset lattice 2n. Then, count the number of

maximum-sized chains in this poset.

3. Determine a necessary and sufficient condition for the divisibility lattice Dn to be a

totally ordered set. Prove that you are correct.

4. Let P D .X; 6/ be a poset. Create a new poset by adding a new element x� to X

and the ordered pair .x�; x�/ to the relation. Determine, with proof, the effects on

the height, width, set of maximal elements, set of minimal elements, existence of a

maximum, and existence of a minimum.

5. Let P D .X; 6/ be a poset. Define the poset OP by adding the new elements O0 and O1
to X , as well as the ordered pairs .O0; O0/ and .O1; O1/, as well as .O0; x/ and .x; O1/ for all

x 2 X .

(a) Prove that OP is indeed a poset.

(b) Find, with proof, height. OP / and width. OP / in terms of height.P / and width.P /.

6. Suppose P is a poset on n elements that is not a total order. What is the maximum

number of ordered pairs in the relation? Prove that you are correct.

7. Find the number of ordered pairs in the subset relation in 2n.

8. Prove that P ŒY �, the subposet of P containing the elements of Y , is a poset.

9. Prove that …n, the partitions of Œn� ordered by refinement, is a poset. In addition, is it

a lattice?

10. Let P D .X; 6/ be a poset. Let A be the set of all its minimal elements and B the set

of all its maximal elements.

(a) Are A and B always disjoint? Prove or give a counterexample.

(b) Prove that each of A and B is an antichain.

11. Complete the proof of Theorem 8.1.4.

12. Prove that in a lattice, the following statements are equivalent: (1) x 6 y; (2) x_y D
y; (3) x ^ y D x.
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13. Prove or disprove: in a lattice, any maximal chain is a maximum chain. (A maximal

chain is a chain that can’t be made larger through the addition of any element. A

maximum chain is a chain of largest possible size.)

14. Let P D .X; 6/ be a poset that has a maximum element and for which the meet of

every pair of elements is defined. Prove that P is a lattice.

Travel Notes

Poset terminology is relatively standard, but poset notation is less so. We choose to distin-

guish between the ground set X and the relation 6, but many authors use a single letter for

both the name of the poset and the relation.

8.2 Isomorphism and Sperner’s theorem

In this section we first examine the notion of what it means for two posets to be “essen-

tially the same.” This notion is that of isomorphism which is pervasive in mathematics. In

Chapter 6 we mentioned what it means for two graphs to be isomorphic and we now do

the same for posets. We then prove Sperner’s theorem which gives the width of the subset

lattice 2n.

Isomorphism

Consider the following two posets. The first is the divisibility lattice D18. The second poset

is the set
˚

f1g; f1; 2g; f1; 3g; f1; 3; 9g; f1; 2; 3; 6g; f1; 2; 3; 6; 9; 18g
	

ordered by inclusion. Figure 8.5 shows their Hasse diagrams.

1

2 3

6
9

18

{1}

{1,2} {1,3}

{1,2,3,6}
{1,3,9}

{1,2,3,6,9,18}

Figure 8.5. Two isomorphic posets.

These two posets are identical except for the labels attached to each element. More

precisely, if � is the function given by

�.1/ D f1g �.6/ D f1; 2; 3; 6g
�.2/ D f1; 2g �.9/ D f1; 3; 9g
�.3/ D f1; 3g �.18/ D f1; 2; 3; 6; 9; 18g;

then xjy in the first poset if and only if �.x/ � �.y/ in the second poset. These two posets

are isomorphic and the function � is called an isomorphism.
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Definition 8.2.1 Let P D .X; 6/ and Q D .Y;�/ be posets. We say that P is isomorphic

to Q, and write P Š Q, provided that there exists a bijection � W X �! Y with the

following property: for each x1; x2 2 X , we have x1 6 x2 if and only if �.x1/ � �.x2/.

The bijection � is called an isomorphism.

Isomorphism and ordering by inclusion

We now prove that any poset can be expressed in terms of the is-a-subset-of relation. That

is, any poset is isomorphic to a collection of sets ordered by inclusion. Figure 8.5 gives the

first example of this. Here is another:

a b

c

e f g

d

{ }a { }b

{ , }a c

{ , , }a c e
{ , , , , }a b c d f

{ , , , }a b d g

{ , , }a b d

By now you probably have a guess about how to construct the correspondence. The

key is to work with the “down-sets” of a poset. Given a poset P D .X; 6/ and an element

x 2 X , the down-set of x is the set of elements “at or below” x, i.e.,

D.x/ WD fy 2 X W y 6 xg:

In the example above, the down-sets are

D.a/ D fag D.e/ D fa; c; eg
D.b/ D fbg D.f / D fa; b; c; d; f g
D.c/ D fa; cg D.g/ D fa; b; d; gg
D.d/ D fa; b; d g:

Question 330 Give the down-set of each element in D24. In the context of the divides

relation, how can you characterize what each down-set contains?

In general, the function that maps each element to its down-set provides the isomor-

phism.

Theorem 8.2.2 Any poset is isomorphic to a collection of sets ordered by inclusion. That

is, if P is a poset, then P is isomorphic to the down-sets of P ordered by inclusion.

Proof: Assume P D .X; 6/ is a poset. Let D be the set of the down-sets of P and let Q D
.D;�/ be the down-sets of P ordered by inclusion. Define � W X �! D by �.x/ D D.x/.

We prove that � is an isomorphism.

To show that � is one-to-one, assume that �.x/ D �.y/, i.e., D.x/ D D.y/. Certainly

x 2 D.x/, so it follows that x 2 D.y/ because D.x/ D D.y/. This means x 6 y. Since

y 2 D.y/, we can use a similar argument to conclude that y 6 x. By antisymmetry,

x D y. Therefore � is one-to-one. The function � is onto by construction. Therefore � is

a bijection.

We now prove that x 6 y if and only if �.x/ � �.y/; that is, x 6 y in P if and

only if D.x/ � D.y/ in Q. First assume that x 6 y. Let z 2 D.x/. This means z 6 x.

Transitivity implies that z 6 y, so z 2 D.y/. Therefore D.x/ � D.y/.

Finally, assume that D.x/ � D.y/. Since x 2 D.x/, it follows that x 2 D.y/. There-

fore x 6 y, and this completes the proof that � is an isomorphism.
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Isomorphism and total orders

Any total order on n elements is isomorphic to the poset n consisting of the set Œn� ordered

by ordinary less-than-or-equal-to. For example, the sets

f2g; f2; 5; 6g; f2; 4; 5; 6; 7g; f2; 5g

ordered by inclusion is a total order that is isomorphic to 4.

Theorem 8.2.3 If P is a total order on n elements, then P Š n.

Though this result seems intuitively obvious, a rigorous proof takes some care (Exercise

6).

Question 331 Give an example of a divisibility lattice Dn that is isomorphic to 10. That

is, give a value of n for which Dn Š 10.

Sperner’s theorem

The Hasse diagrams of the subset lattices 23 and 24 appear in Figure 8.1 on page 319. The

latter poset has width 6 and a maximum-sized antichain is

˚

f1; 2g; f1; 3g; f1; 4g; f2; 3g; f2; 4g; f3; 4g
	

:

It contains the
�

4
2

�

size-2 subsets of Œ4�. The poset 23 has width 3 and contains two maximum-

sized antichains:

˚

f1g; f2g; f3g
	

and
˚

f1; 2g; f1; 3g; f2; 3g
	

:

The first contains the
�
3
1

�

size-1 subsets and the second contains the
�

3
2

�

size-2 subsets.

It appears that in any subset lattice 2n, all of the subsets of Œn� of a fixed size form

a maximal antichain—an antichain that cannot be made larger by adding an additional

element. For example, if we take the size-6 antichain shown above for 24 and add any

subset of size 0, 1, 3, or 4 to it, the result is no longer an antichain.

So in seeking an antichain of 2n of largest possible size, we could do worse than to start

with the
�

n
k

�

size-k subsets of Œn�. The value of k that maximizes this is k D bn=2c. Such

an antichain is maximal. But is it maximum? Sperner’s theorem, published in 1928, says

that it is. The proof we present was published by Lubell (1966). It has become somewhat

of a standard because it involves a nice counting argument.

Let’s take a moment to illustrate the counting problem involved in the key step of the

proof. In the subset lattice 25, how many maximum chains (i.e., chains of maximum size)

contain f2; 4; 5g? Notice that such a chain starts with ; and ends with Œ5�, for example,

; � f4g � f4; 5g
„ ƒ‚ …

below f2; 4; 5g
� f2; 4; 5g � f2; 3; 4; 5g � f1; 2; 3; 4; 5g

„ ƒ‚ …

above f2; 4; 5g
:

Answering the counting question amounts to counting the ways we can specify the portion

of the chain below f2; 4; 5g and the portion of the chain above f2; 4; 5g. There are 3Š ways

to specify the “below” portion and 2Š ways to specify the “above” portion. Therefore there

are 3Š � 2Š maximum chains containing f2; 4; 5g.
Question 332 Justify the last two sentences. Now, let S be a k-subset of Œn�. In the subset

lattice 2n, how many maximum chains contain S?
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330 8. Partially Ordered Sets

Overall, there are nŠ maximum chains in 2n. We are now ready for the proof of Sperner’s

theorem.

Theorem 8.2.4 (Sperner) The width of the subset lattice 2n is

 

n

bn=2c

!

.

Proof: Let w WD width.2n/. First we prove that there exists an antichain of size
�

n
bn=2c

�

and then we prove that no antichain of a larger size exists. That is, first we prove that

w >
�

n
bn=2c

�

and then we prove that w 6
�

n
bn=2c

�

.

Consider the
�

n
k

�

size-k subsets of Œn�. This forms an antichain because if S1 and S2

are unequal subsets, each containing k elements, then S1 6� S2 and S2 6� S1. In particular,

when k D bn=2c we obtain an antichain of size
�

n
bn=2c

�

. Therefore w >
�

n
bn=2c

�

.

Now let fS1; S2; : : : ; Swg be a maximum antichain in 2n. For each i 2 Œw�, let Ci be

the set of all maximum chains containing Si . Notice that

jCi j D jSi jŠ � .n � jSi j/Š;

because there are jSi jŠ ways to specify the portion of the chain “below” Si and .n � jSi j/Š
ways to specify the portion of the chain “above” Si .

The sets Ci are disjoint and therefore the sum of the sizes of these sets is at most the

total number of maximum chains in 2n:
w
X

iD1

jCi j D
w
X

iD1

jSi jŠ � .n� jSi j/Š 6 nŠ or

w
X

iD1

jSi jŠ � .n � jSi j/Š
nŠ

6 1:

Rewrite the i -th term of the sum on the right to get

w
X

iD1

1
�

n
jSi j
� 6 1:

Now, we know that
�

n
k

�

is maximized when k D bn=2c, so
 

n

jSi j

!

6

 

n

bn=2c

!

or
1

�
n

bn=2c
� 6

1
�

n
jSi j
� for all i .

Use this in the inequality to get
w
X

iD1

1
�

n
bn=2c

� 6 1

which implies
w

�
n

bn=2c
� 6 1 or w 6

�
n

bn=2c
�

. This completes the proof.

Besides an antichain consisting of all subsets of size n=2 (when n is even) or of size

.n� 1/=2 or .nC 1/=2 (when n is odd), do other antichains exist? It has been proved (see

Chapter 3 of the book by Erickson (1996)) that the answer is no: the only maximum-sized

antichains in 2n are these “natural” ones. See Exercise 8 for a proof when n is even.

Summary

Poset isomorphism makes precise the idea of what it means for two posets to be equivalent

up to the relabeling of the elements in their ground sets. We used this to prove that any poset

can be thought of as a collection of sets ordered by inclusion. We then used a counting

argument to prove Sperner’s theorem, which says width.2n/ D
�

n
bn=2c

�

.
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Exercises

1. Find a set of positive integers X so that X ordered by divisibility is isomorphic to the

poset below, or else show that no such X exists.

2. Any 3-element poset must be isomorphic to one of the following posets:

Determine how many nonisomorphic posets there are on four elements by drawing

their Hasse diagrams.

3. Determine how many nonisomorphic lattices on five elements there are by drawing

their Hasse diagrams.

4. Prove that poset isomorphismŠ is an equivalence relation

5. Suppose n D pk for some prime p and some positive integer k. Prove that Dn Š
kC 1.

6. Prove Theorem 8.2.3 by induction on n.

7. Let Bn be the set of all n-digit binary numbers. For two such numbers x and y, we

say x 6 y provided that xi 6 yi for all i D 1; 2; : : : ; n. For example in B4, we have

0100 6 0101 and 0110 6 1111 but 0101 66 1110.

(a) Prove that .Bn; 6/ is a poset.

(b) Find a familiar poset that is isomorphic to .Bn; 6/ and prove that you are correct.

8. The goal of this exercise is to prove that the only maximum antichain in 2n when n

is even is that consisting of the size- n
2

subsets of Œn�. Analyze the proof of Sperner’s

theorem to see when equality occurs in the upper bound on w, and then use that

to argue why the maximum antichain fS1; S2; : : : ; Swg must consist of the size-n=2

subsets of Œn�.

Travel Notes

Sperner’s theorem is not to be confused with Sperner’s lemma, which concerns triangula-

tions and is intimately related to Brouwer’s fixed-point theorem of topology.

Sperner’s theorem is a basic result in the field of extremal set theory. A typical problem

involves finding a largest possible collection of sets satisfying some specific constraints.

The theorem can be re-stated in this framework as: if S1; S2; : : : ; Sr is a collection of

subsets of Œn� for which Si 6� Sj for all i 6D j , then r 6
�

n
bn=2c

�

.

Another example of a result in extremal set theory is the Erdős-Ko-Rado theorem:

if S1; S2; : : : ; Sr is a collection of distinct, pairwise intersecting k-subsets of Œn�, where

k 6 n=2, then r 6
�

n�1
k�1

�

. Pairwise intersecting means that Si \ Sj 6D ; for all i and j .
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8.3 Dilworth’s theorem

After Sperner’s theorem, Dilworth’s theorem is the second of the two classical combinato-

rial results on posets that we present. Dilworth’s theorem says that when partitioning the

ground set of a poset into chains or antichains, the smallest number of blocks in any such

partition equals the width or height, respectively.

Antichain covers and Dilworth’s theorem, part I

Consider partitioning the 15 elements of the poset in Figure 8.3 on page 321 (also shown

below) such that each block of the partition is an antichain. We could put each of the 15

elements in its own block but we can certainly use fewer blocks. The following diagram

represents a partition into five blocks where each block is an antichain.

a b

c
e

d

f g h

i j k

l m n

o

This partition of the ground set X D fa; b; c; : : : ; og into antichains is

A D
˚

fa; bg; fc; d; e; og; ff; g; hg; fi; j; kg; fl; m; ng
	

and is known as an antichain cover. Given any poset, an antichain cover is a partition of

the ground set such that each block of the partition is an antichain.

Question 333 Find an antichain cover with the fewest blocks possible for the subset lat-

tices 23 and 24.

What is the minimum size of an antichain cover? The way the dotted boxes were drawn

on the Hasse diagram above suggests that perhaps there is a way to stratify the elements

in the ground set so that an antichain cover is readily available. Define the height of an

element to be the height of a largest chain in the poset that has that element as its maximum.

Labeling each element in our current example with its height gives

1 1

1
1

2

1
3

2

4 4
2

5 5 3

1

This leads to a different partition of the ground set than given earlier but it contains the

same number of antichains:

A0 D
˚

fa; b; c; e; f; og; fd; h; kg; fg; ng; fi; j g; fl; mg
	

:
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Can we find an antichain cover of this poset using fewer than five antichains? No, be-

cause the height of the poset provides a lower bound on the number of antichains required

to cover the ground set. Our current poset has height five, and

a < d < g < i < m

is a maximum chain. Since any two of these elements are comparable, any antichain cover

must place each of these five elements in different blocks.

This suggests a constructive proof of our first “covering” result. We will consider it part

of Dilworth’s theorem even though his original theorem related chain covers to width and

not antichain covers to height.

Theorem 8.3.1 If P is a poset, then there exists a partition of the ground set into height.P /

blocks, each of which is an antichain. Moreover, this is best possible.

Proof: Assume P D .X; 6/ is a poset and height.P / D h. Notice that any antichain cover

requires at least h antichains, for any two elements in a maximum chain are comparable

and hence cannot be in the same block of the partition into antichains.

Now we show that an antichain cover of size h exists. For each i 2 Œh�, define Ai to be

the set of elements of height i . That is,

Ai WD fx 2 X W height.x/ D ig:
Recall that the height of an element x is the height of the largest chain in P whose maxi-

mum element is x.

We now verify that A WD fA1; : : : ; Ahg is an antichain cover. To show that A is a

partition of X take any chain of height h, say

x1 < � � � < xh:

Notice that xi 2 Ai , for i 2 Œh�, because a chain of height h is necessarily a maximum

chain. Hence each block of A is nonempty. In addition, each element of X is in some block

because the height of each element x is well-defined and if height.x/ D i then x 2 Ai .

It remains to prove that each block of A is an antichain. For sake of contradiction,

suppose that some block Ai were not an antichain. Then there would be elements x; y 2 Ai

for which x < y. Since x 2 Ai , by definition height.x/ D i and so there is a chain

x1 < � � � < x

of height i in P . Since y 2 Ai we also have height.y/ D i . But then

x1 < � � � < x < y

is a chain in P of height i C 1 which contradicts height.y/ D i . Therefore each Ai is an

antichain, and this completes the proof.

Example: determining height
The theorem provides an airtight way to prove that the height of a poset is h. Namely,

exhibit a chain of size h as well as an antichain cover of that same size.

Question 334 Use that method to determine the height of the poset shown below.
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Chain covers and Dilworth’s theorem, part II

Just as the height of a poset determines the smallest size of an antichain cover, the width

of a poset determines the smallest size of a chain cover. This result is Dilworth’s original

theorem.

Again, examine the poset of Figure 8.3 on page 321 but this time try to partition the

ground set into chains. Here is one way to do it:

a b

c
e

d

f g h

i
j k

l m n

o

C a  d  g  i  l1 = { , , , , }

C f  m2 = { , }

C c  k  n3 = { , , }

C b4 = { }

C e  h  j5 = { , , }

C o6 = { }

This time, the poset’s width of 6 forces us to use at least six chains. This is because any an-

tichain contains pairwise incomparable elements. Therefore, no two elements in the same

antichain can be in the same chain.

Though exchanging “height” for “width” and “antichain” for “chain” in Theorem 8.3.1

produces Dilworth’s original theorem, the proof is more intricate.

Theorem 8.3.2 (Dilworth) If P is a poset, then there exists a partition of the ground set

into width.P / blocks, each of which is a chain. Moreover, this is best possible.

Proof: Our proof is by strong induction on the size of the ground set. When the ground set

has one or two elements, you can check that the conclusion of the theorem is true for such

posets.

Now assume that n is an integer, n > 2, and that the conclusion of the theorem is true

for any poset on n or fewer elements. Let P D .X; R/ be a poset with jX j D nC 1. Let C

be any maximal chain of P . We divide the analysis into two cases according to the width

of the poset that results from deleting C from P .

Case 1: The induced subposet P 0, obtained from P by deleting the chain C , has

width.P 0/ < width.P /. Since P 0 WD
�

X � C; RŒX � C�
�

is a poset on n or fewer el-

ements, the inductive hypothesis implies that there is a partition of its ground set into w0

chains

X � C D C1 [ � � � [ Cw0

where w0 WD width.P 0/. But then

X D C1 [ � � � [ Cw0 [ C

is a partition of X into w0 C 1 chains. If width.P / D w0 C 1 then this case would be

complete, for then we would have found a partition of X into the required number of

chains. But this is indeed true. Any partition of X into chains requires at least width.P /

chains. Since we have found a partition into w0C 1 chains, we have width.P / 6 w0 C 1.

Also, our assumption in this case is that width.P 0/ < width.P /, i.e., w0 < width.P / or

w0C 1 6 width.P /. Taken together, these two inequalities imply width.P / D w0C 1. This

completes the inductive step in this case.
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Case 2: The induced subposet P 0, obtained from P by deleting the chain C , has

width.P 0/ D width.P /. First let’s note that if we are in this case, then jC j > 2. For, if

C only contains one element, then the fact that C is a maximal chain would mean that it

is an “isolated point” (think in the context of the Hasse diagram). But then width.P 0/ <

width.P /, contradicting our assumption.

In the poset P , let xC and x� be the maximum and minimum elements of C . Define

P � to be the induced subposet obtained from P by deleting xC and x�. Notice that P �

is not empty because P has n C 1 elements and we are assuming n > 2. It also has

width.P �/ D width.P / because of our assumption in this case. Let A be an antichain of

P � having size w, where w WD width.P /:

A D fa1; : : : ; awg:

Certainly A is also an antichain of P .

Define D to be the subposet of P induced by the elements at or below the antichain A.

That is,

D WD
�

D.A/; RŒD.A/�
�

where D.A/ is the down-set of A:

D.A/ WD fx 2 X W x 6 a for at least one a 2 Ag:

Analogously, define

U WD
�

U.A/; RŒU.A/�
�

to be the subposet of P induced by the up-set of A:

U.A/ WD fx 2 X W a 6 x for at least one a 2 Ag:

We next show that we can partition X into three blocks as follows:

X D A[
�

D.A/ � A
�

[
�

U.A/ �A
�

:

Clearly A is nonempty as are the other two sets, because x� 2 D.A/ � A and xC 2
U.A/ �A.

Question 335 Verify these statements.

Also, the three sets are pairwise disjoint. Obviously, the pair A and D.A/�A and the pair

A and U.A/ � A are disjoint. For the other, assume x 2 D.A/ � A and x 2 U.A/ � A.

Then x 6 a for some a 2 A and b 6 x for some b 2 A. But then b 6 a, contradicting the

fact that A is an antichain.

The rest of the proof involves first applying the induction hypothesis to the induced

subposets on D.A/ and U.A/ and then combining the resulting chain partitions into a

chain partition of P . Define the posets

P � WD
�

D.A/; RŒD.A/�
�

P C WD
�

U.A/; RŒU.A/�
�

:

Recall P has nC 1 elements. Each of the two posets above has at most n elements because

xC 62 D.A/ and x� 62 U.A/. Therefore the inductive hypothesis implies that there exist

chain partitions

D.A/ D C1 [ � � � [ Cw

U.A/ D D1 [ � � � [Dw :
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336 8. Partially Ordered Sets

Note that A is an antichain of each of these subposets, so they both have width w. Possibly

by re-indexing the blocks of each partition, we can assume that ai 2 Ci\Di for all i 2 Œw�.

This is because A is a maximum antichain in each of P � and P C, and so each ai 2 A must

appear in a different block of each of the two partitions. Also note that for all i 2 Œw�, the

set Ci [Di is a chain.

Finally, “glue” together these chain partitions into a chain partition of X into w D
width.P / blocks, each of which is a chain:

X D .C1 [D1/[ � � � [ .Cw [Dw/:

This completes the inductive step in this case, and hence the proof of the theorem.

Example: determining width

Like Theorem 8.3.1, Dilworth’s theorem can be used to “certify” the width of a poset.

Question 336 Use Dilworth’s theorem to determine the width of the poset shown below.

Summary

In this section we proved two results true of any poset: (1) the fewest number of antichains

required to partition the ground set equals the height, and (2) the fewest number of chains

required to partition the ground set equals the width. Each can be used to determine the

height or width of a poset.

Exercises

1. Find the height and width of each of the following posets: 10, D24, and …4. Use the

appropriate version of Dilworth’s theorem to certify your answers.

2. Draw the Hasse diagram of a height-2, width-8 poset that contains a maximum ele-

ment. Draw the Hasse diagram of a height-8, width-2 poset containing no maximum

or minimum element. Draw the Hasse diagram of a height-4, width-2 lattice.

3. Use Dilworth’s theorem to determine the height and width of each poset:
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8.4. Dimension 337

4. Find an example of a nontrivial poset P for which width.P � C/ D width.P / for all

nonempty chains C of P .

5. Let m and n be positive integers. Give an example of a height-m, width-n poset on

mn elements.

6. Prove the following result, known as Dilworth’s lemma: if P is a poset on mn C 1

elements, then either P contains a chain of size mC 1 or an antichain of size nC 1.

(Hint: Can you make a connection with the Erdős-Szekeres theorem and its proof, in

Section 1.5?)

Travel Notes

Several proofs of Dilworth’s theorem have surfaced since the original publication of Dil-

worth (1950). Theorem 8.3.1, the easier half, was discovered 21 years later by Mirsky

(1971). A good reference for Dilworth’s theorem and for finite posets in general is the

book by Anderson (2002).

Theorems 8.3.1 and 8.3.2 are known as dual results. Dual results pervade mathematics.

Two that are closely related to Dilworth’s theorem are the duality theorem of linear pro-

gramming and the max-flow min-cut theorem of network flows. Each can be used to prove

Dilworth’s theorem.

8.4 Dimension

In the last section we analyzed a poset by tearing it down—by partitioning the ground

set into simply-structured pieces, namely chains or antichains. In this section we instead

examine how a poset can be built from simpler posets. Total orders serve as the building

blocks and the set intersection operation does the building.

For a first example, consider the poset P below as well as the two total orders L1 and

L2, all having the same ground set:

a

b c

d

P L1 L2

a

b

d

c

a

c

b

d

The poset L1 represents a so-called extension of P to a total order, or more briefly a linear

extension of P . By this we mean that whenever x 6 y in P , it follows that x 6 y in L1.

Specifically, the reflexive pairs a 6 a, b 6 b, c 6 c and d 6 d , as well as the pairs

a < b a < d a < c b < d

are in both P and L1. The same holds for L2 so it is also a linear extension of P .

Because of this it would be natural to write P � L1 and P � L2, and to consider P to

be a subposet of each of its linear extensions. Of course, it is true that each linear extension

includes more pairs than P does. We see that b k c in P while b < c in L1 and c < b in

L2. Also, we observe c k d in P while d < c in L1 and c < d in L2.
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However, the ordered pairs common to both L1 and L2 are exactly those in P . Perhaps

seeing the relations as sets makes it obvious:1

L1 D
˚

.a; a/; .a; b/; .a; d/; .a; c/; .b; b/; .b; d /; .b; c/; .d; d/; .d; c/; .c; c/
	

L2 D
˚

.a; a/; .a; c/; .a; b/; .a; d/; .c; c/; .c; b/; .c; d /; .b; b/; .b; d /; .d; d/
	

L1 \ L2 D
˚

.a; a/; .a; b/; .a; c/; .a; d/; .b; b/; .b; d /; .c; c/; .d; d/
	

D P :

The set fL1; L2g is a realizer of P . It is so called because the intersection of its member

posets equals P . It should be clear that it is not possible to realize P with only one linear

extension for after all P is not a total order. We shall therefore say that the dimension of

P is 2 because (1) it is possible to realize P with two linear extensions, and (2) no smaller

realizer exists.

Question 337 Recopy the Hasse diagram of P and then draw a line connecting c and d .

Find a realizer of this new poset.

At this point the concepts of linear extension, realizer, and dimension should raise a

lot of questions. Where did the linear extensions L1 and L2 come from? Must every poset

have a linear extension? Is the concept of dimension well-defined?

The best answer to the first question is trial and error. Constructing realizers often

requires ad hoc methods that vary from poset to poset. The answer to both the second and

third questions is yes. We postpone their discussion until the end of this section.

Two new posets

Before giving a formal definition of dimension, we introduce two posets that we’ll use in

this section.

Sn: the standard example of an n-dimensional poset

The Hasse diagrams of the standard examples S3 and S4 appear below:

x1 x2 x3

y1 y2 y3

x1 x2 x3

y1 y2 y3 y4

x4

In general, for n > 2 let
X D fx1; x2; : : : ; xng
Y D fy1; y2; : : : ; yng:

Then define Sn WD .X [ Y; 6/ so that the only ordered pairs in the 6 relation, besides

those required to make it reflexive, are all those of the form xi 6 yj for all i 6D j . Perhaps

it is easier to see its construction as a Hasse diagram: put x1; x2; : : : ; xn in a row, put

y1; y2; : : : ; yn in a row directly above that, and then connect each element in the bottom

row to each element in the top row except the one directly above it.

Question 338 How many ordered pairs are in the relation for Sn?

Later, we’ll prove that the dimension of Sn is n.

1It is an abuse of notation to say that a poset equals its relation, but the meaning should be clear since the
ground set X D fa; b; c; dg is understood.
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8.4. Dimension 339

Cn: the crown

To construct the crown Cn, use the same set X [ Y of the standard example poset just

described but instead connect each xi to just two elements: the elements yi and yiC1.

(Wrap-around occurs at the end as the element xn gets connected to yn and y1.) Here are

the Hasse diagrams of the crowns C3, C4, and C5:

x1 x2 x3

y1 y2 y3

x1 x2 x3

y1 y2 y3 y4

x4 x1 x2 x3

y1 y2 y3 y4

x4

y5

x5

Linear extension, realizer, and dimension

Let P D .X; R/ be a poset. By a linear extension of P we mean a totally ordered set of

the form L D .X; R0/ where R � R0. That is, a linear extension of a poset is (1) itself a

poset with the same ground set, (2) a total order, and (3) relation-preserving in the sense

that any ordered pair present in the original poset is also present in the linear extension.

Question 339 Is a 6 f 6 b 6 d 6 e 6 c

a linear extension of the poset shown on the

right? Is f 6 a 6 b 6 c 6 e 6 d? a

b c

e d

f

A realizer of P is a set of linear extensions whose intersection is P . An n-realizer is a

realizer of size n. The dimension of P is the minimum value of n for which an n-realizer

exists. We write dim.P / D n to indicate that the dimension of P is n.

Any proof that the dimension of a poset is n requires two things: (1) an example of an

n-realizer; and (2) a proof that no smaller realizer exists. We now give several examples of

these types of arguments.

First examples of dimension

First we observe that dim.P / D 1 if and only if P is a total order, for any such poset

serves as its own realizer. In a total order, every pair of elements is comparable. Might a

poset in which every pair of distinct elements is incomparable (a “total unorder”) have high

dimension?

Question 340 Find the dimension of the antichain of size 4. Then, extend your result to

find the dimension of the antichain of size n, for n > 2.

Example: the subset lattice 2
3

Next let’s examine the subset lattice 23:

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

Æ
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340 8. Partially Ordered Sets

Certainly dim.23/ > 2. Is its dimension equal to 2 or is it larger?

Let’s begin by assuming that a 2-realizer exists (so that dim.23/ D 2) and see what

happens. Let R D fL1; L2g be a 2-realizer. Begin by noting that f1g k f2; 3g in 23.

Since the intersection of the two linear extensions equals 23, and since f1g and f2; 3g are

incomparable in that poset, then one of the linear extensions must place f1g below f2; 3g
and the other must place f2; 3g below f1g.

Without loss of generality, let’s assume that f1g <1 f2; 3g and f2; 3g <2 f1g, where to

avoid confusion we use 61 to denote the relation of L1 and 62 to denote the relation of

L2.

First we show that f2; 3g <2 f1g forces f2g <2 f1; 3g. This is because

f2g <2 f2; 3g <2 f1g <2 f1; 3g:

(The first and third inequalities follow because they are true in 23 and thus true in any of

its linear extensions.) Similarly, f3g <2 f1; 2g.
Question 341 Provide the details that show f3g <2 f1; 2g.
Now, because f2g k f1; 3g and f3g k f1; 2g in 23, it follows that f1; 3g <1 f2g and f1; 2g <1

f3g. But this in turn implies that

f1; 3g <1 f2g <1 f1; 2g and f1; 2g <1 f3g <1 f1; 3g:

That is, f1; 3g <1 f1; 2g and f1; 2g <1 f1; 3g, which contradicts antisymmetry of the poset

L1. Therefore, no 2-realizer exists for 23.

We have proved that dim.23/ > 3. In order to conclude that dim.23/ D 3 we need to

find a 3-realizer. Here is one:

L1 W ; < f1g < f2g < f1; 2g < f3g < f1; 3g < f2; 3g < f1; 2; 3g
L2 W ; < f1g < f3g < f1; 3g < f2g < f1; 2g < f2; 3g < f1; 2; 3g
L3 W ; < f2g < f3g < f2; 3g< f1g < f1; 2g < f1; 3g < f1; 2; 3g:

Proving that fL1; L2; L3g is indeed a realizer involves a careful if tedious check of the

following two facts:

� If A � B in 23, then A 6 B in all three linear extensions.

� If A k B in 23, then there is some linear extension in which A < B and some other

linear extension in which B < A.

Question 342 Check that these statements are true.

This completes the demonstration that dim.23/ D 3.

The dimension of the standard example Sn

Next we prove that the standard example of an n-dimensional poset is indeed deserving

of its name. Once you understand the proof for a special case (here, n D 4) it easily

generalizes. The standard example S4 is shown below:

x1 x2 x3

y1 y2 y3 y4

x4
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8.4. Dimension 341

First we show that a realizer must consist of at least four linear extensions, and then we

give a specific 4-realizer.

Consider any realizer of S4. Since x1 k y1, we know that any realizer must contain

a linear extension L1 with y1 < x1. Let’s take a close look at what must happen in this

linear extension. In S4 we have x2 < y1 and x1 < y2, so we must have these same relations

preserved in any linear extension. This means that in L1, we have x2 < y1 < x1 < y2,

i.e., x2 < y2. A similar argument shows that x3 < y3 and x4 < y4 in L1 as well.

We have shown that any linear extension of S4 which has y1 < x1 must also have

xi < yi for i D 2; 3; 4. In other words, placing y1 < x1 in a linear extension prevents us

from placing yi < xi for any other i . A similar result holds for other pairs, namely:

Any linear extension of S4 which has yj < xj must also have xi < yi for all i with

i 6D j .

Therefore, any realizer of S4 must necessarily contain a linear extension L1 that has y1 <

x1, a different linear extension L2 that has y2 < x2, and so on for L3 and L4. In other

words, any realizer requires at least four linear extensions and so dim.S4/ > 4.

Now the question remains: does a 4-realizer exist? Yes, and one is pictured in Figure

8.6. The intersection of these four realizers is S4 because of the following.

� Comparable pairs xi < yj : Observe that x1 < yj for j D 2; 3; 4 in all four linear

extensions. Similarly, x2 < yj for j D 1; 3; 4 and x3 < yj for j D 1; 2; 4 and

x4 < yj for j D 1; 2; 3 in all four linear extensions.

� Incomparable pairs xi k yi : Observe that y1 < x1 in L1 while x1 < y1 in all

other linear extensions. Similarly, y2 < x2 in L2 while x2 < y2 in all other linear

extensions, and so on.

� Incomparable pairs xi k xj : Take two different elements xi and xj and assume i < j .

Linear extension Li has xj < xi while all other linear extensions have xi < xj .

x1 x2 x3

y
1

y
2

y
3

y
4

x4

y1

y1y2

y2

y2y3

y3

y3y4

y4

x1

x1x2

x2

x2x3

x3

x3x4 x4 x4

x4

x3

y3

y4

x1

y4

y1

y2

y1

x2

x1

L1 L2 L3 L4

Figure 8.6. A 4-realizer of S4.
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342 8. Partially Ordered Sets

� Incomparable pairs yi k yj : Take two different elements yi and yj and assume i < j .

Linear extension Lj has yj < yi while all other linear extensions have yi < yj .

Therefore, fL1; L2; L3; L4g is a 4-realizer of S4 and so dim.S4/ 6 4. This completes the

proof that dim.S4/ D 4.

The argument that shows that any realizer must have at least size 4 and the construction

of the specific 4-realizer can be generalized to Sn for any n > 2. Exercise 6 asks you to

provide the details.

Theorem 8.4.1 For n > 2, the dimension of the standard example Sn is n.

The dimension of the crown Cn

The crown C3 is the poset with Hasse diagram that appears at the top of Figure 8.7. Below

it appears a 3-realizer, and to the right is verification that the three linear extensions are

indeed a realizer. The first six lines of the table verify that the six comparable pairs present

in C3 are also present in each linear extension. The last nine lines verify that for each

incomparable pair x k y in C3, there is a linear extension containing x < y and another

containing y < x.

But this is just half of the story because it only proves that dim.C3/ 6 3. We now prove

that no 2-realizer exists. For sake of contradiction, suppose that fM1; M2g is a realizer of

C3. Since x1 k y3 in C3, we assume without loss of generality that x1 <1 y3 in M1 and

y3 <2 x1 in M2.

In M2 we have x3 <2 y2 and x2 <2 y1 because

x3 < y3 <2 x1 < y2 and x2 < y3 <2 x1 < y1:

These inequalities also show that y3 <2 y1 and y3 <2 y2 in M2. Since y1 k y3 and

y2 k y3 in C3, it follows that these pairs must be reversed in the other linear extension:

x1 x2 x3

y1 y2 y3

y1

y1

y2 y2

y2

y3 y3

x1

x1
x2

x2

x2
x3

x3

x3

y3

x1

y1

L1 L2 L3

C
3

In C3 In L1 In L2 In L3

x1 < y1 yes yes yes

x1 < y2 yes yes yes

x2 < y2 yes yes yes

x2 < y3 yes yes yes

x3 < y3 yes yes yes

x3 < y1 yes yes yes

x1 k x2 x1 < x2 x2 < x1

x1 k x3 x1 < x3 x3 < x1

x2 k x3 x3 < x2 x2 < x3

y1 k y2 y1 < y2 y2 < y1

y1 k y3 y1 < y3 y3 < y1

y2 k y3 y2 < y3 y3 < y2

x1 k y3 x1 < y3 y3 < x1

x2 k y1 y1 < x2 x2 < y1

x3 k y2 x3 < y2 y2 < x3

Figure 8.7. A 3-realizer of the crown C3.
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8.4. Dimension 343

y1 <1 y3 and y2 <1 y3 in M1. Similarly, we have y1 <1 x2 in M1. It then follows that

x3 < y1 <1 x2 < y2

so x3 <1 y2 in M1. This shows x3 <1 y2 and x3 <2 y2, which implies x3 < y2 in C3.

But x3 k y2 in C3, a contradiction. Therefore no 2-realizer of C3 exists.

Interestingly, and unlike the situation for Sn, the dimension of the crown is always 3.

The argument we gave for C3 does extend to prove the following result. See Exercises 7

and 8.

Theorem 8.4.2 For n > 3, the dimension of the crown Cn is 3.

Existence of linear extensions

To close this section, we discuss three results that show that the concept of poset dimension

is well-defined.

The first says that any poset has a linear extension. Here is a constructive way to see

this. Let x1 be any minimial element of the poset. Delete x1 from the poset, then let x2 be

any minimal element of the resulting poset. Delete x2 from that poset, then let x3 be any

minimal element of the resulting poset. Continue until all elements of the original poset

have been used. The desired linear extension is then x1 6 x2 6 � � � 6 xn. Exercise 5 asks

for a rigorous proof.

The second result is stronger than the first. It ensures that it is possible to create linear

extensions that place incomparable pairs in certain positions. In constructing a realizer we

know that if x and y are incomparable, then we must find a linear extension wherein x < y

and another wherein y < x. For example, in the subset lattice 23, it is possible to find a

linear extension in which f2g < f1; 3g and another linear extension in which f1; 3g < f2g.
Theorem 8.4.3 If P D .X; 6/ is a poset and x0 and y0 are incomparable elements, then

there exists a linear extension of P in which x0 < y0.

See Exercise 9 for an outline of a proof.

The third result is an immediate corollary of the previous theorem: any poset equals

the intersection of all its linear extensions.

Question 343 Give a quick proof using the previous theorem.

Therefore any poset has a realizer—just use all of its linear extensions. Thus the dimension,

being the minimum size of a realizer, is well-defined.

Summary

Any poset has a linear extension, which is a total order that contains all the relations present

in the original poset. A realizer is a set of linear extensions whose intersection equals the

original poset, and the dimension of a poset is the minimum size of a realizer.

Exercises

1. Consider the set X D fa; b; c; d; eg ordered by the following relation:

R D
˚

.a; a/; .a; c/; .a; d/; .a; e/; .b; b/; .b; c/;

.b; d /; .b; e/; .c; c/; .c; d /; .c; e/; .d; d/; .e; e/
	

:

How many different linear extensions does this poset have?
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2. Let n > 3 and let X be the set of 1-element and .n � 1/-element subsets of Œn�. Find

a “named” poset that is isomorphic to .X;�/ and prove that you are correct.

3. Find the dimension of …3, the set of partitions of Œ3� ordered by refinement.

4. Find the dimension of 24.

5. Prove that any poset has a linear extension. Do this by proving that the algorithm

discussed at the end of this section is correct.

6. Extend the argument given in this section to prove that the dimension of Sn is n.

7. Verify that the following three linear extensions form a realizer of C4:

L1 W x4 < x3 < y4 < x2 < y3 < x1 < y2 < y1

L2 W x4 < x1 < y1 < x2 < y2 < x3 < y3 < y4

L3 W x3 < x2 < x1 < y3 < y2 < x4 < y4 < y1:

Then, complete the proof that dim.C4/ D 3 by proving that no 2-realizer exists.

8. Prove Theorem 8.4.2 by generalizing the arguments for C3 and C4.

9. Here is an outline of a proof of Theorem 8.4.3.

(a) Let P D .X; R/ be a poset and suppose x0 k y0. Create a new relation R0 on X

by adding to R the ordered pair .x0; y0/ as well as some additional ordered pairs

to ensure that R0 remains reflexive, antisymmetric, and transitive. What ordered

pairs do you think you have to add?

(b) Prove that P 0 D .X; R0/ is indeed a poset, where R0 is the relation from part (a).

(c) Explain how to complete the proof of the theorem. (Hint: What if P 0 is a total

order? What if it isn’t?)

10. Prove that if P is a poset whose ground set contains at most five elements, then

dim.P / 6 2.

11. A circle order is a poset whose ground set consists of circular disks (circles with their

interiors) in the xy-plane ordered by inclusion. Here is an example of a poset that is

(i.e., is isomorphic to) a circle order:

1 2

3

4 5
C1

C2

C3

C4

C5

In other words i 6 j in the poset on the left if and only if Ci � Cj in the collection

of circles on the right.

Prove: if dim.P / 6 2, then P can be expressed as a circle order.

12. A box order is similar to the idea of a circle order introduced in the previous exercise,

but with rectangular boxes (rectangles with their interiors) instead of circular disks.

(a) Represent each of 22 and 5 as a box order.
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(b) Prove: if dim.P / 6 4, then P can be expressed as a box order.

13. This exercise explains why “dimension” is a good name for the concept studied in this

section. Let X be any set of points in Rn. Define the ordering� on X by x � y when-

ever xi 6 yi for all i . For example, when x D .�4; 1:5; 13/ and y D .0; 100; 13/ in

R3, we have x � y because �4 6 0 and 1:5 6 100 and 13 6 13. On the other hand,

.�4; 1:5; 13/ 6� .0; 0; 15/ because 1:5 66 0.

A poset embeds in Rn provided it is isomorphic to a set of points in Rn ordered by

the relation given above.

(a) Show that the 4-element poset shown at the beginning of this section embeds in

R2. Show that 23 embeds in R3.

(b) Prove that P embeds in R2 if and only if dim.P / 6 2, and also that P embeds in

R3 if and only if dim.P / 6 3.

(c) Generalize to prove that P embeds in Rn if and only if dim.P / 6 n.

In other words, the dimension of P is the least n for which P embeds in n-dimensional

space Rn.

Travel Notes

Dushnik & Miller (1941) introduced the concept of dimension. In that paper they also

introduced the standard example of an n-dimensional poset. Trotter (1992) is the standard

reference for dimension theory of finite posets.

Circle and box orders are examples of so-called geometric containment orders. There

are some tantalizing open questions concerning such posets. Exercise 11 shows that 2-

dimensional posets are circle orders. What about 3-dimensional posets? If we allow infinite

posets, then the answer is no because there exists an example of a 3-dimensional infinite

poset that is not a circle order. But in the case of finite posets, it is not known whether

every 3-dimensional poset is a circle order. Yet there is a result that comes agonizingly

close: every 3-dimensional poset is a regular n-gon order for all n > 3. A regular polygon

with 100 trillion sides is practically a circle, is it not?!?

8.5 Möbius inversion, part I

The final two sections of this book introduce the theory and applications of Möbius in-

version in order to unify some seemingly disparate topics and also to prepare the reader

for further study in combinatorics. In this first section we use the example of inclusion-

exclusion to understand the concepts of zeta function, Möbius function, and the Möbius

inversion formula.

Our exposition essentially follows that of the classic papers of Rota (1964) and Bender

& Goldman (1975). The former is a true milestone in combinatorics and the latter is a

well-written summary of several combinatorial applications of Möbius inversion.

This section assumes that the reader has familiarity with matrix multiplication, the

inverse of a matrix, and the determinant. One can in fact understand the principle of Möbius

inversion without using matrices, but using them makes for good illustrations.
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346 8. Partially Ordered Sets

Revisiting inclusion-exclusion

Our first example in Section 3.1 concerned counting the integers in Œ100� that are divisible

by none of 2, 3, and 5. We defined the universe U to be the set Œ100�, and then defined

property di to be “the integer is divisible by i” for i D 2; 3; 5. The answer to the problem

is ND.;/, which is the number of integers in U having none of the three properties. The

inclusion-exclusion formula (Theorem 3.1.2, page 89) says

ND.;/ D N>.;/� N>.d2/ �N>.d3/ �N>.d5/

CN>.d2d3/CN>.d2d5/CN>.d3d5/ �N>.d2d3d5/:
(8.1)

Recall that, for example, the notation N>.d2d3/ stands for the number of integers in Œ100�

that have the properties d2 and d3 and possibly others—the number of integers in Œ100� that

are divisible by 2 and 3, and possibly by 5. This formula for ND.;/ was useful because we

could easily compute each of the N> values.

To count the integers in Œ100� divisible by 2 but by neither 3 nor 5, we could apply the

more general inclusion-exclusion formula (Theorem 3.1.5, page 92) to get

ND.d2/ D N>.d2/ �N>.d2d3/ �N>.d2d5/CN>.d2d3d5/: (8.2)

Linear systems

Both formulas of equations (8.1) and (8.2) can be derived by solving a linear system. Treat

the values of N> as the “knowns” and the values of ND as the “unknowns.” The following

equation relates the known value N>.d2/ to some unknown values:

N>.d2/ D ND.d2/CND.d2d3/CND.d2d5/CND.d2d3d5/: (8.3)

That is, in counting the integers in Œ100� divisible by 2 (and possibly by 3 or 5), we can

break up the analysis into four disjoint cases: those divisible by 2 alone; those divisible by

2 and 3 alone; those divisible by 2 and 5 alone; and those divisible by 2, 3, and 5. Similarly,

we have

N>.d2d5/ D ND.d2d5/CND.d2d3d5/: (8.4)

These are just two of the eight equations we can write, one for each possible subset of

the three properties. In matrix notation the entire linear system is

0

B
B
B
B
B
B
B
B
B
B
B
@

1 1 1 1 1 1 1 1

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

1

C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
@

ND.;/
ND.d2/

ND.d3/

ND.d5/

ND.d2d3/

ND.d2d5/

ND.d3d5/

ND.d2d3d5/

1

C
C
C
C
C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
B
B
B
B
@

N>.;/
N>.d2/

N>.d3/

N>.d5/

N>.d2d3/

N>.d2d5/

N>.d3d5/

N>.d2d3d5/

1

C
C
C
C
C
C
C
C
C
C
C
A

:

Notice that equations (8.3) and (8.4) appear as the second and sixth rows, respectively.

Question 344 The last row says ND.d2d3d5/ D N>.d2d3d5/. Why is this true?

Abbreviate this matrix equation as ZND D N> where Z is the 8� 8 matrix on the left.

We need to solve for the column vector ND.
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This linear system has a unique solution because the matrix Z is invertible: being

upper triangular, its determinant equals the product of the diagonal entries, which is 1, and

a nonzero determinant means the inverse exists. The solution is ND D Z�1N>, or
0

B
B
B
B
B
B
B
B
B
B
B
@

ND.;/
ND.d2/

ND.d3/

ND.d5/

ND.d2d3/

ND.d2d5/

ND.d3d5/

ND.d2d3d5/

1

C
C
C
C
C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
B
B
B
B
@

1 �1 �1 �1 1 1 1 �1

0 1 0 0 �1 �1 0 1

0 0 1 0 �1 0 �1 1

0 0 0 1 0 �1 �1 1

0 0 0 0 1 0 0 �1

0 0 0 0 0 1 0 �1

0 0 0 0 0 0 1 �1

0 0 0 0 0 0 0 1

1

C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
@

N>.;/
N>.d2/

N>.d3/

N>.d5/

N>.d2d3/

N>.d2d5/

N>.d3d5/

N>.d2d3d5/

1

C
C
C
C
C
C
C
C
C
C
C
A

:

It is perhaps best to use a computer to calculate Z�1.

Notice that all of the inclusion-exclusion formulas produced by Theorems 3.1.2 and

3.1.5 are presently available. Equation (8.1) is the first row of this matrix equation, equation

(8.2) is the second row, etc.

The last important observation to take from this example is that the matrix Z came

from a poset. Specifically, it came from the subsets of fd2; d3; d5g ordered by inclusion. If

we index the rows and columns of Z according to the linear extension

; < fd2g < fd3g < fd5g < fd2; d3g < fd2; d5g < fd3; d5g < fd2; d3; d5g

of that poset, then Zij is 1 when row i ’s set is a subset of column j ’s subset, and Zij is 0

otherwise:

0

B
B
B
B
B
B
B
B
B
B
B
@

; d2 d3 d5 d2d3 d2d5 d3d5 d2d3d5

; 1 1 1 1 1 1 1 1

d2 0 1 0 0 1 1 0 1

d3 0 0 1 0 1 0 1 1

d5 0 0 0 1 0 1 1 1

d2d3 0 0 0 0 1 0 0 1

d2d5 0 0 0 0 0 1 0 1

d3d5 0 0 0 0 0 0 1 1

d2d3d5 0 0 0 0 0 0 0 1

1

C
C
C
C
C
C
C
C
C
C
C
A

D Z:

(We write d3d5, for example, instead of fd3; d5g to save space and avoid clutter.)

The zeta matrix and the Möbius matrix

The matrix Z shown above is called a zeta matrix. Given a poset P D .X; 6/ on n ele-

ments, let’s say we have labeled the elements of X in a specific order as x1; x2; : : : ; xn.

The zeta matrix of P is that n � n matrix Z where

Zij D
(

1 if xi 6 xj

0 otherwise.

If you order the elements of X according to a linear extension of P , as we did in the

inclusion-exclusion example earlier, then indeed Z is an upper triangular matrix with 1s

on the diagonal. (See Exercise 7.) The Möbius matrix of P is then defined as Z�1, the

inverse of the matrix Z.
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348 8. Partially Ordered Sets

Question 345 Find the zeta matrix of the divisibility lattice D18. Label the rows and

columns in the order 1, 2, 3, 6, 9, 18. Then find the Möbius matrix.

The idea of Möbius inversion

Let’s summarize what we learned from the inclusion-exclusion example. We wanted to

answer a counting question and had two functions N> and ND to help us do so. These two

functions were related by the equations

N>.J / D
X

I WJ �I

ND.I / for each J satisfying J � fd2; d3; d5g. (8.5)

The sum is to be interpreted as being over all sets I such that I contains J as a subset,

i.e., over all supersets of J . These equations correspond to the system ZND D N> shown

earlier.

This tells us how to express N> in terms of ND, but the function ND contains the

answer to our counting problem. We inverted equations (8.5) to obtain ND in terms of N>.

The answer is exactly that of Theorem 3.1.5 on page 92, namely

ND.J / D
X

I WJ �I

.�1/jI j�jJ jN>.I / for each J satisfying J � fd2; d3; d5g.

In other words, these equations are exactly those expressed by ND D Z�1N>.

When we first encountered inclusion-exclusion, the counting functions ND and N>

were our main concern. We now see that there is a poset hiding behind the definitions of

ND and N>, namely the subsets of fd2; d3; d5g ordered by inclusion. In other words, the

summation in equation (8.5) is over all elements I in that poset that are “above” the set J .

In Möbius inversion we bring the underlying poset front and center.

At this point we will cease to speak of the zeta matrix and instead work with the zeta

function. There are several advantages. For one, the somewhat unwieldy technical details

of linear algebra (how to index rows and columns, upper triangular form, row reduction,

determinants) disappear and this makes the theory much cleaner. For another, the results

extend easily to certain classes of infinite posets.

The zeta function of a poset

Given a poset P D .X; 6/, the zeta function of P is that function � W X �X �! R given

by

�.x; y/ D
(

1 if x 6 y

0 otherwise.

This function replaces the zeta matrix Z and applies to any finite or infinite poset. In the

inclusion-exclusion example we’ve been using, observe that the equation

N>.J / D
X

I WJ �I

ND.I /

can also be written

N>.J / D
fd2;d3 ;d5g
X

I D;
�.J; I / ND.I /
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8.5. Möbius inversion, part I 349

where we interpret the sum to be over all possible subsets of fd2; d3; d5g. This is be-

cause �, being the zeta function of the subsets of fd2; d3; d5g ordered by inclusion, satisfies

�.J; I / D 1 when J � I and �.J; I / D 0 otherwise.

The incidence algebra of a poset

We want to find the inverse of �, for that is what the Möbius function is, so next we need

to understand what an inverse is in this context. In some sense it is just a generalization of

the inverse of a matrix.

Let P D .X; 6/ be a poset. First of all, we restrict ourselves to functions ˛ W X�X �!
R that satisfy ˛.x; y/ D 0 whenever x 66 y. Along with the operations of addition, scalar

multiplication, and function multiplication that we will define shortly, this set of functions

forms what is known as the incidence algebra of P .

For two such functions ˛ and ˇ, their sum ˛ C ˇ is defined as usual: .˛ C ˇ/.x; y/ D
˛.x; y/C ˇ.x; y/. This is the same way that matrix addition is defined—componentwise.

If c 2 R, then the scalar multiplication c˛ is also no surprise: .c˛/.x; y/ D c � ˛.x; y/.

This is the same way that scalar-matrix multiplication is defined.

The function multiplication operation is the important one because the Möbius function

is a multiplicative inverse of the zeta function. The product ˛ˇ of two functions ˛ and ˇ is

defined by

.˛ˇ/.x; y/ D
X

zWx6z6y

˛.x; z/ˇ.z; y/: (8.6)

Let’s take a moment to notice why this is similar to matrix multiplication in the case of a

finite poset. For two n � n matrices A and B , their product AB is defined componentwise

by

.AB/ij D
n
X

kD1

aikbkj :

For finite posets this really is the same formula as equation (8.6), especially when we

realize that the sum in that equation can be taken over all z 2 X . This is because ˛.x; z/ D
0 whenever x 66 z and ˇ.z; y/ D 0 whenever z 66 y.

Locally finite posets

A poset P D .X; 6/ is locally finite if for all x; y 2 X the set

Œx; y� D fz 2 X W x 6 z 6 yg

is finite. The set Œx; y� is called, quite naturally, the interval from x to y. For example, in

the poset D18 we have

Œ3; 18�D f3; 6; 9; 18g
Œ3; 9� D f3; 9g

Œ6; 18�D f6; 18g
Œ2; 2�D f2g:

Of course, finite posets are locally finite. But many infinite posets are locally finite as well,

such as the positive integers ordered by divisibility and the subsets of positive integers

ordered by inclusion.
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The extension from finite to locally finite posets is an important one that requires little

extra effort. The locally finite assumption guarantees that the sums we deal with, such as

that of equation (8.6), are finite and thus convergent.

Question 346 Give an example of a poset that is not locally finite.

The Möbius function of a poset

The inverse of the zeta matrix Z was that matrix M for which MZ D I , the identity

matrix. To find the inverse of the zeta function �, we seek a function � so that �� is

the identity function. In this case the incidence algebra’s identity function is known as

Kronecker delta, which is that function ı W X �X �! R given by

ı.x; y/ D
(

1 if x D y

0 otherwise.

Compare it with the identity matrix I .

Question 347 Suppose that the zeta function of a poset equals ı shown above. What does

the poset look like?

We now define the Möbius function and then prove that it is an inverse of the zeta

function.

Definition 8.5.1 Given a locally finite poset P D .X; 6/, the Möbius function of P is that

function � W X �X �! R defined by the following inductive procedure.

1. Set �.x; y/ WD 0 for all x; y 2 X with x 66 y.

2. Set �.x; x/ WD 1 for all x 2 X .

3. Assuming x < y and that �.x; z/ has already been defined for all z satisfying x 6

z < y, define

�.x; y/ WD �
X

zWx6z<y

�.x; z/:

The Möbius function is in the incidence algebra by virtue of #1, and the sum in #3 is

well-defined because the poset is locally finite.

Theorem 8.5.2 If P D .X; 6/ is a locally finite poset with zeta function �, then the Möbius

function � is an inverse of �. That is, �� D ı where ı is the Kronecker delta function.

Proof: Assume P D .X; 6/ is a locally finite poset with zeta function �. Let x; y 2 X .

Our goal is to show that .��/.x; y/ D ı.x; y/. By equation (8.6),

.��/.x; y/ D
X

zWx6z6y

�.x; z/ �.z; y/:

Case 1: If x 66 y, then the sum is empty and hence .��/.x; y/ D 0. In addition,

ı.x; y/ D 0 because x 66 y implies x 6D y. Therefore .��/.x; y/ D ı.x; y/.

Case 2: If x D y, then

.��/.x; x/ D
X

zWx6z6x

�.x; z/ �.z; x/ D �.x; x/ �.x; x/ D 1 � 1 D 1:

Also, ı.x; x/ D 1, so therefore .��/.x; x/ D ı.x; x/.
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8.5. Möbius inversion, part I 351

Case 3: Finally, if x < y we have

.��/.x; y/ D
X

zWx6z6y

�.x; z/ �.z; y/

D
X

zWx6z6y

�.x; z/

D

0

@
X

zWx6z<y

�.x; z/

1

AC �.x; y/

D ��.x; y/C �.x; y/

D 0:

The second-to-last equality follows from #3 in Definition 8.5.1. Also, ı.x; y/ D 0 because

x < y implies x 6D y. Therefore .��/.x; y/ D ı.x; y/.

Example: computing a Möbius function

What is the Möbius function of the total order 5?

First we write the zeta function: for any i; j 2 Œ5� we have �.i; j / D 1 when i 6 j ,

and �.i; j / D 0 otherwise. Using step #2 of Definition 8.5.1, we set

�.1; 1/ D 1 �.2; 2/ D 1 � � � �.5; 5/ D 1:

Next, use step #3 to get

�.1; 2/ D ��.1; 1/ D �1

�.1; 3/ D ��.1; 1/� �.1; 2/ D �1 � .�1/ D 0

�.1; 4/ D ��.1; 1/� �.1; 2/ � �.1; 3/ D �1 � .�1/ � 0 D 0

�.1; 5/ D ��.1; 1/� �.1; 2/ � �.1; 3/� �.1; 4/ D �1 � .�1/ � 0 � 0 D 0:

Then find

�.2; 3/ D ��.2; 2/ D �1

�.2; 4/ D ��.2; 2/� �.2; 3/ D �1 � .�1/ D 0

�.2; 5/ D ��.2; 2/� �.2; 3/� �.2; 4/ D �1 � .�1/ � 0 D 0:

Continuing, we find that �.i; i/ D 1 for all i , �.i; i C 1/ D �1 for i D 1; 2; 3; 4, and

�.i; j / D 0 otherwise.

The Möbius function of a total order

The previous example easily generalizes (Exercise 8) to a total order of any size. This result

will play an important role in Section 8.6.

Theorem 8.5.3 The Möbius function of the total order n is given by

�.i; j / D

8

ˆ̂
<

ˆ̂
:

1 if i D j

�1 if i C 1 D j

0 otherwise.

Question 348 Let � be the Möbius function of the poset D16. Find �.2; 8/ and �.4; 8/.
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Example: the Möbius function of …3

Consider the partitions of Œ3� ordered by refinement:

1.2.3

1.23 2.13 3.12

123

We compute its Möbius function by first setting �.P; P / D 1 for all partitions P . Then

�.1:2:3; 1:23/ D ��.1:2:3; 1:2:3/ D �1

and similarly �.1:2:3; 2:13/ D 1 and �.1:2:3; 3:12/ D 1. Next,

�.1:2:3; 123/ D ��.1:2:3; 1:2:3/� �.1:2:3; 1:23/� �.1:2:3; 2:13/

� �.1:2:3; 3:12/

D �1 � .�1/ � .�1/ � .�1/

D 2:

Finally, �.1:23; 123/ D ��.1:23; 1:23/ D �1 and similarly �.2:13; 123/ D �1 and

�.3:12; 123/ D �1. Since we have computed �.P; Q/ for all partitions P and Q satisfy-

ing P � Q, we are finished.

The principle of Möbius inversion, version I

We are ready to state the main result now that we know how to construct the Möbius

function of a poset. Let P D .X; 6/ be a locally finite poset and let ND and N> be real-

valued functions defined on the elements of this poset. The principle of Möbius inversion

says that if ND and N> are related by the equations

N>.x/ D
X

yWx6y

ND.y/ for each x 2 X ,

then we can invert these equations to solve for ND. The use of ND and N> is meant to

hearken back to their meaning in the context of inclusion-exclusion.

Theorem 8.5.4 (Möbius inversion, I) Suppose P D .X; 6/ is a locally finite poset with

Möbius function �. If ND and N> are functions X �! R related by the equations

N>.x/ D
X

yWx6y

ND.y/ for each x 2 X , (8.7)

and where there exists some u 2 X for which ND.x/ D 0 unless x 6 u, then

ND.x/ D
X

yWx6y

�.x; y/ N>.y/ for each x 2 X: (8.8)

Comment: The condition “there exists some u 2 X for which ND.x/ D 0 unless x 6 u”

ensures that the sums are finite in the case of an infinite poset. It will always be satisfied

when applying the theorem to a finite poset.
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Proof: Assume P D .X; 6/ is a locally finite poset and that ND and N> are related by the

equations (8.7). Let x 2 X . Begin with the sum in equation (8.8) and write N>.y/ in terms

of ND according to (8.7) to get
X

yWx6y

N>.y/ �.x; y/ D
X

yWx6y

X

zWy6z

ND.z/ �.x; y/:

Since �.y; z/ D 0 whenever y 66 z, use � to replace the inner sum by one over the entire

set X . After this, switch the order of summation and rearrange to obtain
X

yWx6y

X

zWy6z

ND.z/ �.x; y/ D
X

yWx6y

X

z2X

�.y; z/ ND.z/ �.x; y/

D
X

z2X

X

yWx6y

ND.z/ �.x; y/ �.y; z/:

To this last expression, factor ND.z/ out of the inner sum and then restrict that sum over

y satisfying x 6 y 6 z. There is no harm in doing so because �.y; z/ D 0 when y 66 z.

This shows
X

z2X

X

yWx6y

ND.z/ �.x; y/ �.y; z/ D
X

z2X

ND.z/
X

yWx6y

�.x; y/ �.y; z/

D
X

z2X

ND.z/
X

yWx6y6z

�.x; y/ �.y; z/:

The inner sum in the last expression equals .��/.x; z/, which in turn equals ı.x; z/ because

�� D ı. Therefore
X

z2X

ND.z/
X

yWx6y6z

�.x; y/ �.y; z/ D
X

z2X

ND.z/ ı.x; z/

D ND.x/ ı.x; x/

D ND.x/:

This completes the demonstration of equation (8.8), and hence the proof.

The principle of Möbius inversion, version II

In inclusion-exclusion and in the Möbius inversion formula of Theorem 8.5.4, we used

the notation N>.x/ to remind us to sum ND over all elements in the poset at or above

x. This is the “greater than” version of the Möbius inversion formula (8.8). There is a

corresponding “less than” version that we now state. We shall have occasion to use both

versions in Section 8.6.

Theorem 8.5.5 (Möbius inversion, II) Suppose P D .X; 6/ is a locally finite poset with

Möbius function �. If ND and N6 are functions X �! R related by the equations

N6.x/ D
X

yWy6x

ND.y/ for each x 2 X , (8.9)

and where there exists some l 2 X for which ND.x/ D 0 unless l 6 x, then

ND.x/ D
X

yWy6x

�.y; x/ N6.y/ for each x 2 X: (8.10)

Question 349 Prove the theorem by making the necessary modifications to the proof of

Theorem 8.5.4.
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Summary

Any poset (finite or locally finite) has a zeta function as well as a well-defined inverse of the

zeta function called the Möbius function. The Möbius inversion formulas can be thought

of as generalizations of inclusion-exclusion, and in Section 8.6 we show how it applies to

several combinatorial problems.

Exercises

1. Determine, with explanation, which of the following statements are always true of the

Möbius function of any poset.

(a) If �.x; y/ D 0, then x 66 y.

(b) If x 66 y, then �.x; y/ D 0.

2. Find �.x; y/ in the case that y covers x.

3. Compute the Möbius function of each of the three posets shown:

4. Let � be the Möbius function of …4, the partitions of Œ4� ordered by refinement

whose Hasse diagram is shown in Figure 8.4 on page 324. Find �.1:2:3:4; 1234/

and �.2:3:14; 1234/.

5. Explain why M is the Möbius matrix of a poset, then the column sums of M always

equal 0.

6. Show how to use Möbius inversion to solve the following equations for the xi in terms

of the si :

s1 D x1

s2 D x1 C x2

s3 D x1 C x2 C x3

s4 D x1 C x2 C x3 C x4

s5 D x1 C x2 C x3 C x4 C x5:

In other words, what are ND and N>, what is the underlying poset and its Möbius

function, and how do you then find the solution?

7. Suppose P D .X; 6/ is a poset and that the elements of X have been labeled accord-

ing to a linear extension: x1 < x2 < � � � < xn. Prove that if we label the rows and

columns of the zeta matrix Z according to this linear extension, then Z has 1s on the

diagonal and 0s below the diagonal.

8. Prove Theorem 8.5.3.
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8.6 Möbius inversion, part II

In this final section we show how to apply the principle of Möbius inversion to derive the

inclusion-exclusion formula and to solve a Pólya-type problem of counting under equiva-

lence. We also sketch how to use it to solve the interesting problem of counting the con-

nected labeled graphs on n vertices. These problems require knowing the Möbius function

of the subset lattice, the divisibility lattice, and partitions ordered by refinement, respec-

tively. First we develop a useful technique for computing Möbius functions.

Computing Möbius functions via poset products

Though the Möbius function of a poset can be found by using the inductive method of

Definition 8.5.1, there are other techniques. The one we present here involves defining the

product of two posets and then relating the Möbius function of the product to the Möbius

function of each poset in the product. This is a simple relationship and it makes the method

highly practical.

Given posets P1 D .X1; 61/ and P2 D .X2; 62/, we define their product as the poset

P1 � P2 WD .X1 �X2; 6/;

where the relation 6 on the ordered pairs in X1 �X2 is defined for each x1; y1 2 X1 and

x2; y2 2 X2 by

.x1; x2/ 6 .y1; y2/ if and only if x1 61 y1 and x2 62 y2.

The product of two posets is a poset (Exercise 2). Indeed the reflexive, antisymmetric, and

transitive properties from P1 and P2 are directly inherited by the product. The idea easily

extends to n-fold products P1 � P2 � � � � � Pn.

Example: The subset lattice as a product

Let B1 WD
�

f0; 1g; 6
�

be the totally ordered set on the integers 0 and 1. Then B1 � B1 is

the poset on the ordered pairs in the set

f0; 1g � f0; 1g D
n

.0; 0/; .0; 1/; .1; 0/; .1; 1/
o

which we will just abbreviate as the set of 2-digit binary numbers f00; 01; 10; 11g. This

product has x1x2 6 y1y2 whenever x1 6 y1 and x2 6 y2. (For simplicity, we’re using the

6 symbol for both the relation on B1 as well as on B1 � B1.) For example, in B1 � B1 we

have 10 6 11 because the first digits satisfy 1 6 1 in B and the second digits satisfy 0 6 1

in B. On the other hand, 10 66 01 in the product.

The product B1 � B1 � B1 is defined similarly: it is on the set

f000; 001; 010; 100; 011; 101; 110; 111g

of 3-digit binary numbers where x1x2x3 6 y1y2y3 if the 6 relation is satisfied compo-

nentwise on the digits. The Hasse diagrams of B1, B2, and B3 are as follows:
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100

101110

010 001

011

111

00000

01101

0

11

B
1

B
3

B
2

These look familiar and indeed the n-fold product Bn is isomorphic to the subset lattice

2n for n > 1. The usual correspondence between subsets and binary numbers provides the

isomorphism (Exercise 3).

The Möbius function of a product

The following theorem provides the specifics on how the Möbius function of a product

relates to the Möbius function of each poset in the product. (See Exercise 7 for the proof.)

Theorem 8.6.1 If P1 D .X1; 61/ and P2 D .X2; 62/ are posets with Möbius functions

�1 and �2, respectively, then the Möbius function � of the product P1 � P2 satisfies

�
�

.x1; x2/; .y1; y2/
�

D �1.x1; y1/ �.x2; y2/

for each x1; y1 2 X1 and x2; y2 2 X2.

For example, since B1 is a total order, the Möbius function �1 of B1 is

�1.0; 0/ D 1

�1.0; 1/ D �1

�1.1; 1/ D 1:

To find the Möbius function �2 of B2 D B1 � B1, we can compute it according to the

theorem as
�2.00; 00/ D �1.0; 0/ �1.0; 0/ D .1/.1/ D 1

�2.00; 01/ D �1.0; 0/ �1.0; 1/ D .1/.�1/ D �1

�2.00; 10/ D �1.0; 1/ �1.0; 0/ D .�1/.1/ D �1

�2.00; 11/ D �1.0; 1/ �1.0; 1/ D .�1/.�1/ D 1

and so on.

Question 350 Finish computing �2. Why is it only necessary to find �2.x1x2; y1y2/ when

x1x2 6 y1y2?

Applying the principle of Möbius inversion

We are now ready to look at applications of Möbius inversion. Any such application needs

the following two things.

� An underlying poset and its Möbius function.

� Numerical functions ND and N> (or N6) defined on the poset that perform some sort

of counting.
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In our first application, we calculate the Möbius function of the subset lattice and then apply

Möbius inversion to obtain the inclusion-exclusion formula. In the second, we calculate

the Möbius function of the divisibility lattice and then apply Möbius inversion to answer a

Pólya-type counting question.

The Möbius function of the subset lattice

For n > 1, we know that the subset lattice 2n is isomorphic to the poset Bn. Since Bn is the

n-fold product B1 � B1 � � � � � B1, we will use products to compute the Möbius function

of Bn.

First let’s make an observation about �1, the Möbius function of B1. Since it is a total

order, Theorem 8.5.3 tells us that

�1.0; 0/ D 1

�1.0; 1/ D �1

�1.1; 1/ D 1

and this can be written in one stroke as �1.x; y/ D .�1/y�x whenever x 6 y in B1.

Now let �n be the Möbius function of Bn. By Theorem 8.6.1 and our formula for �1

we have, whenever x1x2 � � �xn 6 y1y2 � � �yn,

�n.x1x2 � � �xn; y1y2 � � �yn/ D �1.x1; y1/ �1.x2; y2/ � � � �1.xn; yn/

D .�1/y1�x1 .�1/y2�x2 � � � .�1/yn�xn

D .�1/y1Cy2C���Cyn�.x1Cx2C���Cxn/

D .�1/
P

yi �
P

xi :

That is, for two n-digit binary numbers x D x1x2 � � �xn and y D y1y2 � � �yn with x 6 y,

we have

�n.x; y/ D .�1/
P

yi �
P

xi D .�1/.# ones in y/�.# ones in x/:

Then using the usual correspondence between n-digit binary numbers and subsets of an

n-set, we see that

�n.I; J / D .�1/jJ j�jI j for I; J � Œn� with I � J . (8.11)

This completes the computation of the Möbius function of the subset lattice 2n.

Application: inclusion-exclusion

We now state the general principle of inclusion-exclusion in a slightly different manner

than that of Theorem 3.1.5 on page 92. As stated, it is a direct translation of Theorem 8.5.4

into the language of inclusion-exclusion. Recall that 2P denotes the power set of P , i.e.,

the set of all possible subsets of P .

Theorem 8.6.2 (inclusion-exclusion) Let P be an n-set and consider the subsets of P

ordered by containment. If ND and N> are real-valued functions defined on 2P and are

related by the equations

N>.I / D
X

J WI �J

ND.J / for each I 2 2P ,
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then

ND.I / D
X

J WI �J

.�1/jJ j�jI j N>.J / for each I 2 2P :

The Möbius function of the divisibility lattice

Next we derive a formula for the Möbius function of the divisibility lattice Dn. Actually,

it turns out that it suffices to compute the Möbius function of the infinite, but locally finite,

poset D of positive integers ordered by divisibility. This latter function is the so-called

number theoretic Möbius function. When used in number theory it is written as a single-

variable function �.x/ rather than as a bivariate function �.x; y/. The reason for doing so

will become clear when we derive the formula. In preparation for this we first use the poset

product to make a beautiful connection between divisibility lattices and prime factoriza-

tion.

Prime factorization and poset products

The prime factorization of any integer n, n > 2, can be written

n D p
˛1

1 p
˛2

2 � � �p
˛t
t

where the pi are distinct primes and the ˛i are positive integers. When n D 24 we have

24 D 23 � 31 so t D 2, p1 D 2, ˛1 D 3, p2 D 3 and ˛2 D 1. For each i , the divisibility

lattice on the divisors of p
˛i

i is a total order. More importantly, the product of those t

divisibility lattices is isomorphic to the divisibility lattice of divisors of n.

An illustration appears in Figure 8.8. Since each of 8 and 3 is a power of a single prime,

the divisibility lattices D8 and D3 are total orders. Their product is shown in the middle of

the figure and it is clearly isomorphic to D24 shown on the right. In fact, we can associate

each .a; b/ in the product with the integer a � b in D24. In that way, .a; b/ 6 .c; d / in

D8 � D3 if and only if ajc and bjd . This is equivalent to abjcd because a and b are

relatively prime as are c and d .

In general, the prime factorization carries over to poset products in the following way.

If

n D p
˛1

1 p
˛2

2 � � �p
˛t

t

3

11

2

4

8

1

2 3

4 6

8 12

24

(1,1)

(2,1) (1,3)

(4,1) (2,3)

(8,1) (4,3)

(8,3)

D
8

D
3

D D
8 3
´ D

24

Figure 8.8. The divisibility lattice D24 as a product of D8 and D3.
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is the prime factorization of n, then the set of divisors of n ordered by divides is isomorphic

to the product of the total orders D
p

˛i
i

. That is,

Dn Š D
p

˛1
1

�D
p

˛2
2

� � � � �D
p

˛t
t

: (8.12)

Of course this requires proof (Exercise 4). This is a beautiful extension of the Fundamental

Theorem of Arithmetic with total orders playing the role of prime powers.

Question 351 Factor D60 into a product of total orders and make an illustration like that

of Figure 8.8.

The number-theoretic Möbius function

The isomorphism shown in (8.12) above allows for easy computation of the Möbius func-

tion of Dn using Theorem 8.6.1. Here is how to find the Möbius function �24 of D24 by

using the isomorphism D24 Š D8 �D3.

Write the ground set of D8 as f20; 21; 22; 23g instead of f1; 2; 4; 8g. Similarly, write the

ground set of D3 as f30; 31g. Since each of these posets is a total order, a convenient way

to write their Möbius functions is

�8.2i ; 2j / D
(

.�1/j �i if j � i 2 f0; 1g
0 otherwise,

and

�3.3i ; 3j / D
(

.�1/j �i if j � i 2 f0; 1g
0 otherwise,

according to Theorem 8.5.3.

Now we work on �24 using Theorem 8.6.1. If a and b are divisors of 24, and ajb, then

a D 2i13i2 and b D 2j13j2. Therefore

�24.a; b/ D �24.2i13i2 ; 2j12j2/

D �8.2i1 ; 2j1/ �3.3i2 ; 3j2/

D .�1/j1�i1 .�1/j2�i2

D .�1/
P

.jk�ik/;

where the second-to-last equality holds when jk � ik 2 f0; 1g for k D 1; 2; otherwise

�24.a; b/ D 0. Notice next that the exponents jk � ik also arise naturally in the prime

factorization of b
a

, specifically

b

a
D 2j13j2

2i13i2
D 2j1�i13j2�i2 :

So, when ajb we have jk � ik > 0 for k D 1; 2. In view of the fact that

�24.a; b/ D
(

.�1/
P

.jk�ik / if jk � ik 2 f0; 1g for k D 1; 2

0 otherwise,

it follows that �24.a; b/ just depends on the prime factorization of b
a

. That is,

�24.a; b/ D

8

ˆ
<̂

ˆ̂
:

1 if a D b

.�1/k if b
a

equals the product of k distinct primes

0 otherwise.
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For example, �24.3; 24/ D 0 because 24
3
D 8 is not a product of distinct primes. However,

�24.2; 12/ D .�1/2 D 1 because 12
2
D 6 D 2 � 3 is the product of k D 2 distinct primes.

Note also that �24.4; 24/ D �24.1; 6/ D 1.

The ideas we used to find �24 extend not only to the more general case of Dn but to

the locally finite poset D of positive integers ordered by divisibility. To find �.a; b/ when

ajb in D, it suffices to find the Möbius function of the lattice of divisors of b
a

. This is

because (1) the interval Œa; b� in D is isomorphic to the lattice of divisors of b
a

, and (2) the

Möbius function’s values on an interval Œx; y� of any locally finite poset depend only on

the structure of the subposet defined by that interval. The latter assertion is immediately

evident from the inductive method of Definition 8.5.1. For the former, see Exercise 5.

Theorem 8.6.3 The Möbius function � of any finite divisibility lattice Dn, and indeed of

the infinite poset D of positive integers ordered by divisibility, is given by

�.a; b/ D

8

ˆ̂
<

ˆ
:̂

1 if a D b

.�1/k if b
a

is the product of k distinct primes

0 otherwise.

Because �.a; b/ only depends on the single quantity b
a

, in number theory it is usually

written as a univariate function: �.b
a
/ WD �.a; b/ for all positive integers a; b with ajb.

Equivalently, �.m/ WD �.1; m/ for any positive integer m.

Question 352 Find �.30/ and �.100/. Also, if m is a positive integer then what is �.m2/?

Application: counting circular colorings

We next demonstrate how to use Möbius inversion to tackle a Pólya-type problem. On one

hand, this approach is less direct than using the techniques of Chapter 5. On the other hand,

it demonstrates the flexibility of Möbius inversion.

In how many ways can we color a spinner containing six regions if each region can be

colored with one of three colors? An uncolored spinner with its regions labeled appears

below at the left, and two possible colorings using black, gray, and white appear at the

right.

1
2

3
4

5

6

The spinner is free to rotate in the plane so its symmetry group is the cyclic group C6.

Question 353 Use the techniques of Chapter 5 to count the spinners. (You should get 130.)

Let’s approach this problem in a different way. If the spinner is not allowed to rotate

then there are 36 possible colorings: each coloring can be specified by a 6-list where each

letter is either B, G, or W. The two colorings shown earlier correspond to the lists BGG-

BGG and WGWBGB. The question is how to deal with different 6-lists that correspond to

equivalent spinner colorings.

Figure 8.9 illustrates some of the issues. The coloring shown at the top of the figure is

equivalent to three different 6-lists while the coloring shown at the bottom is equivalent to
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BGGBGG
GGBGGB
GBGGBG

WGWBGB
GWBGBW
WBGBWG

BGBWGW
GBWGWB
BWGWBG

Three 6-lists are equivalent to this coloring:

Six 6-lists are equivalent to this coloring:

Figure 8.9. Lists of period 3 and of period 6.

six different 6-lists. We shall say that the 6-lists shown at the top have period 3 while those

shown at the bottom have period 6. In general, a list of any length has period d provided

that d is the smallest positive number of rotations required to obtain the original list. A

rotation shifts each element of the list to the left one place with wraparound occurring at the

ends. (This corresponds to a counterclockwise rotation of the spinner.) A monochromatic

coloring such as BBBBBB has period 1. To count the inequivalent spinners, we can just

count the inequivalent 6-lists under this notion of equivalence.

The first key observation is that the period of any list must be either 1, 2, 3, or 6; that

is, it must be a divisor of 6.

Question 354 Why can’t a 6-list have period 4, for example?

Let C.d/ denote the number of “circular d -lists” with period d . By those we mean lists of

length d and period d , where two lists are equivalent if one can be obtained from the other

via rotations. The answer to our original question is

C.1/C C.2/C C.3/ CC.6/ or
X

d Wd j6
C.d/:

This is because any circular 6-list of period d , where d j6, can be created by first specifying

a circular d -list of period d and then repeating that list the appropriate number of times to

create a 6-list. For example, we know C.2/ D 3 because the (inequivalent) circular 2-lists

of period 2 are BG, BW, and GW. These correspond to the three (inequivalent) circular 6-

lists of period 2, namely BGBGBG, BWBWBW, and GWGWGW. In general, for a spinner

with n regions where each region can be colored with one of k colors the answer is
X

d Wd jn
C.d/: (8.13)

We shall compute C.d/ via Möbius inversion. (In our small example C.1/, C.2/, and

C.3/ can be computed easily but C.6/ is more difficult.) What we need is a way to relate

C.d/ to a known problem, and here it is:

36 D
X

d Wd j6
d � C.d/:

We give a combinatorial proof. How many 6-lists, where each element is B, G, or W, are

possible? One answer is 36. For the other answer, consider cases based on the period of
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the 6-list when treated as a circular list. If the period is d , where d j6, then we select a

circular d -list in C.d/ ways. There are then d choices for how to use this (circular) d -list

to start the (non-circular) 6-list. For example, if d D 3 and we choose BWW, then this

corresponds to the 6-lists BWWBWW, WWBWWB, and WBWWBW. There are d �C.d/

having period d . Summing over all divisors of 6 gives the answer.

In general, the same reasoning applies to a spinner having n regions where each re-

ceives one of k colors. We have, for any positive divisor d of n,

kd D
X

eWejd
e � C.e/: (8.14)

In the context of Theorem 8.5.5, the poset P is the divisibility lattice Dn so that the set X

is the set of positive divisors of n. The functions ND and N6 are

ND.d/ WD d � C.d/

N6.d/ WD kd :

According to the theorem the equation (8.14) can be inverted as

ND.d/ D
X

eWejd
�.e; d/ N6.e/ or d � C.d/ D

X

eWejd
�.e; d/ ke :

Solving for C.d/ gives

C.d/ D 1

d

X

eWejd
�.e; d/ ke

which can be written using the number-theoretic Möbius function as

C.d/ D 1

d

X

eWejd
�

�
d

e

�

ke for every positive divisor d of n. (8.15)

Therefore, in light of sum (8.13) there are

X

d Wd jn

1

d

X

eWejd
�

�
d

e

�

ke (8.16)

different colorings of a spinner with n regions where each can receive one of k colors.

To find the solution to the original question (n D 6 and k D 3), first compute C.d/ for

d D 1; 2; 3; 6. To get C.6/, calculate

C.6/ D 1

6

X

eWej6
�

�
6

e

�

3e

D 1

6

�

�.6/ 31 C �.3/ 32 C �.2/33 C �.1/ 36
�

D 1

6

�

1 � 3C .�1/ � 9C .�1/ � 27C 1 � 729
�

D 116:

Question 355 Use the formula to verify that C.1/ D 3, C.2/ D 3, and C.3/ D 8.

Therefore, there are
X

d Wd j6
C.d/ D 3C 3C 8C 116D 130

different colorings of the spinner.
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Two applications to graph theory

To close we briefly mention two applications of Möbius inversion in graph theory. One is a

formula for the chromatic polynomial of a graph. It is not a practical formula but has been

used to study graph coloring from a different, more general point of view.

The second is a formula for the number of connected labeled graphs on n vertices. In

this case the pertinent Möbius function is that of the partitions of Œn� ordered by refinement.

For such a partition � , let ND.�/ equal the number of labeled graphs with vertex set Œn� and

where the blocks of � correspond exactly to the vertex sets of the connected components

of the graph. Let O1 denote the maximum element of the partition lattice, i.e., the partition of

Œn� into one block. This means that the number of connected labeled graphs on n vertices

is ND.O1/.

Defining N6.O1/ D
P

�W�6O1 ND.�/, we have by Möbius inversion

ND.O1/ D
X

�W�6O1

�.�; O1/ N6.�/:

The values N6.�/ are easy to find. For example, note that N6.O1/ D 2.n
2/ because this is

just the total number of labeled graphs on n vertices.

Question 356 Suppose � is a partition of Œn� that has bi blocks of size i , for i D 1; 2; : : : ; n.

Explain why

N6.�/ D
n
Y

iD1

2.i
2/bi :

The remainder of the work involves finding the Möbius function �.�; O1/. If the partition �

has k blocks, then it can be shown that

�.�; O1/ D .�1/k�1.k � 1/Š ;

and so the number of connected labeled graphs on n vertices is

ND.O1/ D
X

�W�6O1

.�1/k�1.k � 1/Š

n
Y

iD1

2.i
2/bi ; (8.17)

where for each partition � in the sum, k is its number of blocks and bi is the number of

blocks of size i . This formula is not terribly practical for computation because the sum is

over all possible partitions of Œn�. For example, when n D 10 the number of terms in the

sum is the 10th Bell number B.10/ D 115;975. It can be rewritten (Exercise 10) as a sum

over all partitions of the integer n, which is a smaller number. When n D 10, this is the

partition number P.10/ D 42.

Summary

Möbius inversion, though not always the most practical or direct technique, is nonetheless

an important piece of theory that unifies several combinatorial ideas that might otherwise

appear unrelated. To each situation that it is applied, the technique brings the underlying

poset to the fore. For inclusion-exclusion, that poset is the subset lattice; for counting

circular lists, it is the divisibility lattice; and for counting connected labeled graphs, it is

the partition lattice.
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364 8. Partially Ordered Sets

Exercises

1. Let � be the number-theoretic Möbius function, and suppose k is a positive integer.

Calculate �.5kC1 � 1/ and �.k9 C k5 C 2k3/.

2. Prove that the product of two posets is a poset.

3. Let n > 1. Prove that Bn Š 2n.

4. If n D p
˛1

1 p
˛2

2 � � �p
˛t

t is the prime factorization of n, then prove the isomorphism

shown in (8.12).

5. Let D be the infinite poset of positive integers ordered by divisibility. Let a and b be

positive integers with ajb. Prove that D restricted to the interval Œa; b� is isomorphic

to D b

a

.

6. Let P D .X; 6/ be a poset that has a minimum element O0 and a maximum element O1.

Suppose also that there is an element Ox 2 X , different from O0 and O1, that is comparable

to every element. Determine �.O0; O1/.

7. Prove Theorem 8.6.1.

8. For any positive integer n, let �.n/ equal the number of positive integers in Œn� that

are relatively prime to n. That is, �.n/ D
ˇ
ˇfa 2 Œn� W gcd.a; n/ D 1g

ˇ
ˇ. (This is the

Euler phi-function.) Use Möbius inversion to derive the identity

�.n/ D
X

d Wd jn
�
� n

d

�

d:

9. Use the identity of the previous exercise to prove that the sum shown in (8.16) can

also be written as
1

n

X

d Wd jn
�
� n

d

�

kd :

10. Rewrite formula (8.17) so that the sum is over the partitions of the integer n. (Hint:

Consider type vectors of the partitions.) Then, use it to compute the number of con-

nected labeled graphs on four vertices and on five vertices.

Travel Notes

We have Gian-Carlo Rota (1932–1999), a professor of mathematics at MIT, to thank for

recognizing the importance of Möbius inversion in combinatorics. His 1964 paper, “On the

foundations of combinatorial theory, I. Theory of Möbius functions,” was recognized in

1988 by the American Mathematical Society’s Leroy P. Steele prize for Seminal Contribu-

tion to Research. That paper, the prize’s citation says, is “the single paper most responsible

for the revolution that incorporated combinatorics into the mainstream of modern mathe-

matics.” Rota went on to write nine more “foundations” papers that continue to influence

combinatorial research.
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Pólya, G. (1937). “Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und

Chemische Verbindungen,” Acta Mathematica, 68, 145–254.
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Hints and Answers to Selected
Exercises

For selected Exercises in the text, either the final answer or a hint is given. In the case

of final answers, they are left in terms of standard notation (e.g.,
�
5
2

�

rather than 10) and

are given to help you check your work. Of course in most cases a final answer alone is

not sufficient—you will want to explain it. Hints are given to help you through proofs or

more involved problems, or to suggest how a special case might lead to the solution of the

original problem. Use them only if you get stuck!

Section 1.1

1. (a)
��

16
6

��

(b)
�

25
5

�

(c) .18/4

The lottery with the fewest number of possible tickets offers the best chance of winning—

which one is it?

2. (a) 216

(b)
�

20
10

�

3. (a) 3n

(b) 8n

(c) 16n

5.
��

4
15

��

7. There are n4 passwords. Then solve n4
> 109 to find n.

9. (a) 210

(b) 210

(c)
�

17
10

�

11.
��

6
5

��

;
�

6
5

�

13. Hint: Once you know which six numbers are in the permutation, how many ways are

there to put them in increasing order?

15.
��

5
16�5

��

D
��

5
11

��

is the answer to the first question.

17. Hint: Each solution corresponds to a 10-multiset taken from Œ3�.

18.
�

8
5

�

19. Hint: Any rectangle is uniquely specified by the two horizontal and two vertical grid

lines that enclose it.

369
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370 Hints and Answers

Section 1.2

1. (a) How many k-lists taken from Œn� have at least one repeated element?

(c) How many n-digit binary numbers contain at least one 0 and at least one 1?

(d) How many 5-digit ternary numbers (each digit is 0, 1, or 2) cannot also be con-

sidered 5-digit binary numbers?

3. One answer is
P20

kD3

�
20
k

�

but it involves a sum of 18 terms. Find an answer that is

easier to compute by hand.

5. Hint: Extend the example given in the text by first defining D to be the set of 8-

character passwords that have no digits present.

7.
��

n
k

��

�
�

n
k

�

9. Hint: The product of the elements is even exactly when the subset contains at least

one even element.

11. Count the complement: 265 � 5 � 263 � 5. (Assume that A, E, I, O, U are the only

vowels.)

15. Hint: Start by answering the same question but for the integers from 1 to 100. Then

see how this answer helps you answer the same question but for the integers from 1

to 1000. Then continue the pattern.

16. The answer to the first question is 4 � .5/3.

17. Hint: Break into cases depending on the value of x4.

18. (a) 4

(c) 13 � 48

(d) 13 �
�
4
3

�

� 12 �
�

4
2

�

(f) 10 � 45 � 4 � 36

(h)
�

13
2

��
4
2

��
4
2

�

� 44

Section 1.3

1. The answer to the first question is
Pn�1

iD1 i , but can you write it in closed (non-

summation) form?

3. 107 because there are 10 choices for f .1/, then 10 choices for f .2/, and so on, up to

10 choices for f .7/.

5. Hint: Let f be the function that takes as its input a subset of Œn� and outputs an n-

digit binary number that has 1s in the positions that correspond to the elements of the

subset. Prove that this f is a bijection.

8. Hint: First explain why f �1 is a function and why its domain is B . For the one-to-one

proof, assume b1; b2 2 B and that f �1.b1/ D f �1.b2/. Apply f to both sides and

what happens?

9. Assume S1 and S2 are k-subsets of Œn�, and that h.S1/ D h.S2/. This means Sc
1 D Sc

2

which implies .Sc
1 /c D .Sc

2 /c or S1 D S2. Perhaps this proof is easier?

12. It is a bijection when n is odd. Why is it not a bijection when n is even?
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Section 1.4

1. Each equivalence class contains eight permutations and there are three equivalence

classes. One class contains the permutations 1234, 1243, 2134, 2143, 3412, 3421,

4312, 4321.

3. E�1 D E . To prove it, first prove E�1 � E and then prove E � E�1.

5. In the blank should be “it is the identity relation on A.”

8. 10�5�4Š�4Š
10

D 5 � 4Š � 4Š

9. 10Š
10�2

11. The answer to the second question is
�

n
2

�

. Why?

13. For the equivalence relation, consider two permutations of Œn� equivalent provided

that the first k entries of each permutation are identical.

15. First do a complete enumeration of the n D 4 case if it helps.

Section 1.5

1. 6

3. Hint: Pair off the elements of Œ2n� as .1; 2n/, .2; 2n� 1/, .3; 2n� 2/, and so on. Do

you see how to use the pigeonhole principle where these pairs are the pigeonholes?

6. (a) Hint: Examine the parity (even/odd) of the two coordinates in each pair.

7. Hint: When n D 3, such a sequence is 3; 2; 1; 6; 5; 4; 9; 8; 7.

9. Hint: Adapt the proof of Theorem 1.5.4.

Section 2.1

1. (a) How many permutations of Œn� are not in increasing order from left to right?

(b) How many 4-lists taken from Œ20� have at least one repeated element?

(c) Hint: See Combinatorial Proof #1 of this section.

2. .15/6 �
�

9
4

�

, or
�

15
4

�

� .11/6

4. (a) 97 � 96

(b) 8 � .8/6

(c) 47

6. (a) 55 � 45

(b) .n � 1/n

7. Hint: Use/extend the work in the “Counting onto functions” subsection.

12. This establishes that in order to count functions Œk� �! Œn�, it is equivalent to count

k-lists taken from Œn�.

13. If F is the set of one-to-one functions Œk� �! Œn�, then L is the set of k-permutations

of Œn�.

16. (a) Hint: Initially there are n ways to specify the location of customer 1, namely at

the front of one of the n lines. Then there are nC 1 ways to specify the location

of customer 2: before customer 1 in line, after customer 1 in line, or at the front

of one of the remaining n� 1 lines. Continue.
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372 Hints and Answers

Section 2.2

1. (a) How many n-digit binary numbers have at most two 1s?

(b) How many ways are there to select a 5-person committee from a group of 10

people?

2. Hint: Given a group of 20 people, in how many ways can we form an 8-person com-

mittee, a 5-person subcommittee of that committee, and a 3-person task force of that

subcommittee?

4. (a) Hint: How many n-digit ternary numbers are there? For Answer 2, condition on

the number of 2s

(e) Hint: From a store that sells n donut varieties, in how many ways can we order k

donuts such that we order at least one variety of each type?

(f) Hint: Count k-multisets from Œn�. Condition on the largest element appearing in

the multiset.

6. Hint: Use a similar proof to that of the binomial theorem, but instead count passwords

with no repeated characters.

7. (a)
��

4
1

��

or just 4

(b)
��

2
8

��

(c)
��

20
401�20

��

D
��

20
381

��

(d)
��

4
12�1�1�2�2

��

D
��

4
6

��

8. Hint: Any term is of the form aibj ck where i; j; k are nonnegative integers. What

must i C j C k equal?

11. Hint: First count the ways to specify an unordered collection of k integers taken from

Œn�.

13. Hint: Solve a linear system. At some point you will want to look up “Vandermonde

matrix” in a linear algebra book if you haven’t encountered it before.

Section 2.3

1. S.20; 3/ D 580;606;446 and S.20; 1/C S.20; 2/C S.20; 3/ D 581;130;734

3. S.8; 5/ � 5Š D 126;000

5. Hint: First specify the “missed” element, then specify an onto function involving the

remaining elements.

7. Hint: Look at Section 1.4.

9. Hint: Any partition of Œn� into n � 1 blocks contains exactly one block of size 2 and

the remaining blocks have size 1. Let f be the function that takes such a partition as

its input and then outputs the block of size 2. Prove that this f is a bijection.

11. Hint: For Answer 2, condition on the number of elements that are not in the block

containing n.

12. Hint: Apply Theorem 2.3.1 twice.

14. Hint: Trace what the program does on an example, say S.7; 4/. Use Stirling’s triangle

of the second kind to visualize.

18. (b)
Pn

iD1 ˇ.k; i/

(c) Hint: Use Exercise 16 of Section 2.1 and the equivalence principle.
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Section 2.4

1. (a) S.40; 10/ � 10Š

(b)
��

10
40

��

(c)
P10

iD1 S.40; i/

(d) P.40; 10/

(e) .40/10

(f)
�

40
4

�

� 936

5. P.n; n � 2/ D 2 when n > 4, and P.n; n � 2/ D 1 when n D 3.

6. Apply Theorem 2.4.1 once to get P.n; 2/ D P.n� 1; 1/CP.n� 2; 2/ D 1CP.n�
2; 2/. Apply it again to P.n � 2; 2/ and continue.

8. Hint: Given a partition of n, add 1 to each existing part and then append enough parts

of size 1 to bring the total number of parts to n. For example, the partition 5C 1C 1

of 7 turns into 6C 2C 2C 1C 1C 1C 1. Prove that this function is a bijection.

11. How many partitions of n don’t have any parts of size 1?

12. Hint: Instead prove the equivalent inequality P.n C 2/ � P.nC 1/ >

P.nC 1/ � P.n/.

Section 3.1

1. The answer to the first question is 2666.

2. Hint:
�

100
4�6
˘

does not equal the number of integers in Œ100� that are divisible by both

4 and 6.

4. (a) Hint: Define P1 to be the property that the hand has no spades, P2 the property

that it has no clubs, etc. The answer is
�

52
13

�

�
�

4
1

��
39
13

�

C
�

4
2

��
26
13

�

�
�

4
3

��
13
13

�

.

(b) Hint: The number of hands void in spades is ND.P1/.

5. (a)
P6

j D0

�
6
j

�

.�1/j .6 � j /Š .6 � j /Š

6. Dn D nŠ
Pn

j D0
.�1/j

j Š

7. (b) Use the alternating series remainder term theorem from calculus.

8. Let Pi be the property that recipient i receives six or more objects. The answer is

ND.;/ which is
��

10
20

��

�
�

10
1

���
10
14

��

C
�

10
2

���
10
8

��

�
�
10
3

���
10
2

��

:

14. Hint: How many 0-subsets of Œn� are possible? Let pi be the property that element i

is in the subset, for i 2 Œn�.

17. Hint: There are
�

16
10

�

paths from A to B.
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374 Hints and Answers

Section 3.2

1. (a) Inductive step: Assume k is an integer, k > 0, and that 3k � 1 is divisible by 2.

Then 3kC1 � 1 D 3.3k/ � 1 D 3.3k/ � 3C 2 D 3.3k � 1/ C 2. Each term is

divisible by 2, so 3kC1 � 1 is divisible by 2.

5. The formula is .�1/n n.nC1/
2

.

6. The formula is n.nC1/.nC2/
6

.

9. (a) Hint: Start induction at n D 3. Adapt the proof given in the text.

(b) Hint: Try proving Ln 6 bn and derive the smallest value of b that you can use in

proving the inductive step. At some point you should solve b C 1 D b2.

12. This is the Fundamental Theorem of Arithmetic!

Section 3.3

1.
1

.1 � x2/.1 � x3/.1 � x6/.1 � x7/.1 � x8/

2. (a) coefficient of x14 in .x C x2/10

(c) coefficient of x75 in
1

.1 � x3/.1 � x5/.1 � x10/.1 � x12/

(e) coefficient of x15 in .1C x C x2 C � � � C x8/3

3. (a)
��

23
60

��

(c)
��

8
2

��

(d)
��

3
23

��

6. Find the coefficient of x15 in
.1C x/5

.1 � x/3
, which is

P5
kD0

�
5
k

���
3

15�k

��

.

9. (a) Writing
1

.1 � x/.1 � 2x/
D A

1 � x
C B

1 � 2x
gives A D �1 and B D 2. The

coefficient of xk is 2kC1 � 1.

Section 3.4

1. Hint: Find the coefficient of x12 in .x C x2 C x3 C x4/6. Final answer is
��

6
6

��

�
�

6
1

���
6
2

��

.

3.
Pk

j D0

�
n
j

���
m

k�j

��

5. a
b

�

� c
b

�k

8. The coefficient of xn

nŠ
in e3x is 3n, which equals the number of n-letter passwords

using the letters A, B, C.

9. cn D 2n � 2
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Section 3.5

1. (a) an D 2n � 1, for n > 0

(c) cn D .nC 1/3n, for n > 0

(d) dn D .nC 1/2n, for n > 0

2. an D .2 � n/nŠ

5. (a) g1 D 1, g2 D 2, and g5 D 10

Section 3.6

1. a30 D �257;363;915;118;311

2. (a) an D 4.2n/ � 1, for n > 0

(c) Hint: r1; r2 D 1˙ i .

6. Your final answer should be tn D 1

2
p

3

�

1C
p

3
�nC1

� 1

2
p

3

�

1 �
p

3
�nC1

, for n > 0.

Section 4.1

1. (a)
�

16
10;4;2

�

(b) Hint: First specify a 12-digit sequence having 10 W’s and 2 T’s. Then specify a

way to insert the four L’s so that none of them are adjacent.

3.

 

120

105

!

105Š

.2Š/42 � 42Š � .3Š/7 � 7Š

5.
�

31
12;9;10

�

8. Question: From a group of n people, how many ways are there to create an m-person

committee and then create a task force of any size from the remaining n�m people?

10. Combinatorial: Let n > 2. Given n people, in how many ways can we select a

nonempty committee of any size and also designate one person as the chair and one

person as the vice-chair? Non-combinatorial: Take two derivatives of .1C x/n.

11. Your conjecture should be that the sum equals 4n.

13. It equals

 

1=2

n

!

.�8/n, but simplify it using the technique shown in this section.

15. The recurrence is a1 D 1 and an D
Pn�1

kD1 akan�k for n > 2.

Section 4.2

2. One formula is F2nC1 D
Pn

kD0 F2k , and there is another one for F2n.

3. Hint: You can write the error in terms of a Fibonacci number.

4. Hint: Prove by induction on n.

6. (a) Verify the base case for n D 2 and n D 3. Now assume n is an integer, n > 3, and

that it’s true for all k satisfying 2 6 k 6 n. We need to prove 3FnC1 D FnC3 �
Fn�1. By the Fibonacci recurrence 3FnC1 D 3.Fn C Fn�1/ D 3Fn C 3Fn�1.

Apply the inductive hypothesis to each term and simplify.

11. Hint: Condition on whether the bracelet is open or closed.
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Section 4.3

2. 3x4 � 30x3 C 69x2 � 38x � 17

4. (a) In any permutation of Œn� having n � 1 cycles, there will be one 2-cycle and

the remaining cycles are 1-cycles. There are
�

n
2

�

ways to specify a 2-cycle, so

c.n; n� 1/ D
�
n
2

�

.

(b) A permutation of Œn� having only one cycle is equivalent to a circular seating of

n people around a table, as we studied in Section 1.4. There are nŠ
n
D .n� 1/Š.

5. Use separation of variables: dy
y
D f .x/ dx. Integrate both sides to obtain ln y D

F.x/ CC where F is an antiderivative of f . Solving for y gives y D eF .x/CC .

8. Hint: Use the binomial theorem first on .1C x/n, then substitute

xk D
k
X

j D0

S.k; j /.x/j

and switch the order of summation.

11. Hint: The answer is B.n � 1/.

12. x4 D
�
x
1

�

C 14
�
x
2

�

C 36
�

x
3

�

C 24
�
x
4

�

13. �.f .n/ C g.n// D f .nC 1/C g.n C 1/� .f .n/C g.n// D .f .nC 1/� f .n//C
.g.n C 1/ � g.n// D �f .n/C�g.n/

Section 4.4

1. There are k parts of size 2 and the rest (if any) are parts of size 1.

2. The idea is that zi � ziC1 equals the number of parts of size i in the conjugate, for

i D 1; 2; : : : ; k. (Define zkC1 WD 0.)

4. The solution is A D C D 1
4

and B D 1
2

. Therefore P.n; at most two parts/ equals

the coefficient of xn in 1=4
1�x
C 1=2

.1�x/2 C 1=4
1Cx

. From this you should get

P.n; at most two parts/ D 2nC 3C .�1/n

4
:

Then use P.n; 2/ D P.n � 2; at most two parts/.

7. (a) Since limn�!1
f .n/
f .n/
D 1 it follows that f � f . Also, if f � g then

lim
n�!1

g.n/

f .n/
D lim

n�!1
1

f .n/
g.n/

D
lim

n�!1
1

lim
n�!1

f .n/

g.n/

D 1

1
D 1;

and so g � f . Now prove the transitive property.

9. (b) Hint: Prove by induction.
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Section 5.2

1. four

3. (a) ��1 D .1 5 3/.2/.4 6/ and ��1 D .1 2 3 4 5 6/

(b) � ı � D .1 4 5 6/.2 3/ and � ı � D .1 2/.3 4 5 6/

(c) ��1 ı .� ı �2/ D .1 6 3 4/.2 5/

(d) ��2 D .1 3 5/.2/.4/.6/ and ��3 D .1 4/.2 5/.3 6/

4. Hint: Not every element of .R; �/ has an inverse.

5. Left-cancellation: Assume a; b; c 2 G and a�b D a�c. Left-multiply by a�1 to get

a�1 � .a�b/ D a�1 � .a� c/. Use associativity to write .a�1 �a/�b D .a�1 �a/� c

which implies e � b D e � c, so b D c.

6. Hint: Prove by contradiction.

7. Hint: Revisit the proof of Theorem 5.2.4.

9. The symmetry group is the dihedral group D4.

motion product of disjoint cycles

I .1/.2/.3/.4/.5/.6/.7/.8/.9/

R1 .1 3 9 7/.2 6 8 4/.5/

R2 .1 9/.2 8/.3 7/.4 6/.5/

R3 .1 7 9 3/.2 4 8 6/.5/

F1 .1/.2 4/.3 7/.5/.6 8/.9/

F2 .1 3/.2/.4 6/.5/.7 9/.8/

F3 .1 9/.2 6/.3/.4 8/.5/.7/

F4 .1 7/.2 8/.3 9/.4/.5/.6/

15. (a) One-to-one: Assume h1a; h2a 2 Ha. Then f .h1a/ D f .h2a/ implies h1b D
h2b, and right-cancellation implies h1 D h2. Right-multiplying by a shows

h1a D h2a.

Section 5.3

1. (b) only the identity permutation

2. 1
8

�

k9 C 4k6 C k5 C 2k3
�

3. (b) Let a be the edge between 1 and 2, b the edge between 2 and 3, etc.

motion � product of disjoint cycles
ˇ
ˇfixD4

.�/
ˇ
ˇ

I .1/.2/.3/.4/.a/.b/.c/.d/ 29

R1 .1 2 3 4/.a b c d/ 22

R2 .1 3/.2 4/.a c/.b d/ 24

R3 .1 4 3 2/.a d c b/ 22

F1 .1/.2 4/.3/.a d/.b c/ 25

F2 .1 3/.2/.4/.a b/.c d/ 25

F1;2 .1 2/.3 4/.a/.b d/.c/ 25

F2;3 .1 4/.2 3/.a c/.b/.d/ 25

Answer: 1
8

�

29 C 4.25/C 24 C 2.22/
�

D 83
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5. (a) the cyclic group C5

(b) 5Š

(d) 1
5

�

5ŠC 0C 0C 0C 0
�

D 5Š
5

, as we obtained in Section 1.4.

6. The symmetry group has size 2. The answer is 1
2

�

28 C 24
�

D 136.

Section 5.4

1. Now the symmetry group only has size 2 and consists of the identity and one of the

flip operations. The answer is 1
2

�

k5 C k3
�

.

3. The answer to the first question is 1
14

�

27 C 7 � 24 C 6 � 21
�

D 18. The answer to the

second is 1
14

�
�

7
3

�

C 6 � 0C 7 � 3
�

D 4.

7. The symmetry group is C3. The answer is 1
3

�

310 C 2 � 34
�

D 19;737.

9. The symmetry group is D3. The answer is 1
6

�

4636 C 2 � 4232 C 3 � 4434
�

D 508;080.

11. For the 4 � 4 grid the answer is 1
4

�

216 C 28 C 2 � 24
�

D 16;456.

13. One orbit contains 00000 and 11111. Another contains 00001, 00010, 00100, 01000,

10000, 11110, 11101, 11011, 10111, and 01111. A third contains 00011, 00110,

01100, 11000, 10001, 11100, 11001, 10011, 00111, and 01110. The fourth contains

00101, 01010, 10100, 01001, 10010, 11010, 10101, 01011, 10110, 01101.

Section 5.6

1. For S3 it’s 1
6

�

z3
1 C 3z1z2 C 2z3

�

.

2. For C4 it’s 1
4

�

z4
1 C z2

2 C 2z4

�

.

3. 1
p

�

z
p
1 C .p � 1/zp

�

6. The cycle index is 1
14

�

z7
1 C 6z7 C 7z1z3

2

�

. Substitute z1  � aC bC c C d , z2  �
a2 C b2 C c2 C d 2, etc. into the cycle index. The terms we are interested in are

48ab2c2d 2 C 48a2bc2d 2C 48a2b2cd 2C 48a2b2c2d . The answer is 4 � 48 D 192.

9. The cycle index is 1
3

�

z10
1 C 2z1z3

3

�

. Substitute z1  � r C g C w and z3  � r3 C
g3 C w3 and expand. Add the coefficients on terms of the form gi wj or rgi wj . The

answer is 2064.

Section 6.1

1.

 �
n
2

�

m

!

3. Hint: Try a proof by contradiction.

5. It is not isomorphic to K3;3. Why?

7. Hint: Consider a longest path in G.

9. (a) e.Qk/ D k2k�1

10. (a) Hint: Count edges in Kn. For Answer 2, partition the vertices into a k-set and an

.n�k/-set, then count edges within the k-set, between the k-set and the .n�k/-

set, and within the .n � k/-set.
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11. We proved this in Section 1.5.

12. (a) B8
5;5 D 1235

(c) 36

15. Hint: A is the adjacency matrix of Kn, so count i -j walks in Kn.

Section 6.2

1. Hint: Each component of a forest is a tree, so use the tree-edge formula on each

component.

2. Hint: One way to prove it involves deleting a vertex of degree � and analyzing what’s

left.

4. Hint: Split the spanning trees into two types, those containing e and those not con-

taining e.

5. (a) �.C5/ D 5

(b) �.K4/ D 16

(c) Hint: �.Kn � e/ D �.Kn/� �.Kn � e/.

6. For K4, the matrix M is

0

B
B
@

3 �1 �1 �1

�1 3 �1 �1

�1 �1 3 �1

�1 �1 �1 3

1

C
C
A

and its .1; 1/ cofactor is

det

0

@

3 �1 �1

�1 3 �1

�1 �1 3

1

A D 16:

8. (b) Hint: The sum you want is
Pn�1

kD1 L.n; k/.

Section 6.3

1. �.T / is almost always 2. When is it not 2?

3. Hint: Get a palette of ı C 1 colors and just start coloring one vertex at a time. Why

will you never run into trouble?

5. The Petersen graph has � D 3 but the Grötsch graph has � > 3.

7. �.G/ D 4, e.G/ D 9, and n.G/ D 6

9. (a) p.K1;n; k/ D k.k � 1/n�1

(b) p.K2;n; k/ D k.k � 1/n�2 C k.k � 1/.k � 2/n�2 (Hint: Any proper k-coloring

either has the vertices in the 2-vertex partite set colored the same or colored

differently.)

(c) Hint: p.C3 [ P4 [K5; k/ D p.C3; k/ � p.P4; k/ � p.K5; k/.

11. Hint: p.Kn � e; k/ D p.Kn; k/C p.Kn � e; k/.

13. Hint: p.Kn; k/ D .k/n.

15. Use induction and a similar approach to the proof of properties CP1-CP3 given in the

section.
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Section 6.4

1. (a) true

(d) false

2. Hint: Generalize the argument used in the section to prove that 9! .3; 4/.

4. Hint: Follow the approach suggested in the section. You will also want to use Pascal’s

identity.

5. Hint: Draw C13 and label its vertices 0-12 clockwise around it. Connect each vertex

to two additional vertices: those that are distance 5 and 8 in the clockwise direction

from the vertex. (So vertex 0 is adjacent to 1 and 13, and also to 5 and 8. Vertex 1

is adjacent to 2 and 0, and also to 6 and 9.) This graph represents the red edges. All

other edges are blue.

6. (a) R.K3 � e; Kb/ D 2b � 1

(c) R.C4; C4/ D 6

(d) R.K3; C4/ D 7

Section 7.1

1. (a) k D vr
b

and � D r.vr�b/
b.v�1/

(b) r D �.v�1/
k�1

and b D �v.v�1/
k.k�1/

3. Take all .n� 1/-subsets of Œn�.

5. b D
�

n
k

�

, v D n, r D
�

n�1
k�1

�

, k, and � D
�

n�2
k�2

�

7. Hint: Use the equivalence principle to count the blocks. Notice that �
�

v
2

�

equals the

number of ways first to select a pair of varieties and then to select a block that the pair

belongs to.

10. Hint: f0; 1; 2; 6; 9g
11. Hint: Use f0; 1; 2; 4g as one of the base blocks.

14. Hint: Find the parameters of the complementary design.

17. (a) When you construct a cyclic design, the number of blocks must be a multiple of

the number of varieties. Why?

(b) You need b D cv by part (a). The other equations follow from this.

(c) The basic necessary conditions as well as those from part (b) don’t rule out its

existence.

Section 7.2

1. You need b D r.5rC1/
6

and v D 5r C 1. Setting r D 4 results in parameters that

meet all necessary conditions so far, as does r D 6 and r D 7. (Fisher’s inequality in

Section 7.3 eliminates the r D 4 possiblity.)

3. Hint: If this design exists, then its complementary design exists too.

5. Hint: Solve for b and v in terms of k and then put the parameters in the given form.

7. Hint: It is the residual of a certain symmetric design.
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9. Hint: If D is symmetric, then DT is a BIBD. Use the fact that symmetric designs are

linked.

10. (b) Hint: Use the BRC theorem. You should find that it eliminates k D 7; 8; 10.

11. Hint: Find the parameters and use the BRC theorem.

Section 7.3

1. There is only one. What is it?

2. Hint: Use the construction method of Theorem 7.3.3.

3. If such a design exists, its parameters are .2r; 6; r; 3; 2r
5

/. Determine what values r

can take on, then use some results from Section 7.1.

7. (a) There are five of type I, 10 of type II, and 15 of type III.

9. Yes, all necessary conditions in those theorems are met so they do not rule out its

existence.

Section 7.4

1. Ten errors were made.

3. The answer to both questions is
�

8
0

�

C
�
8
1

�

C
�

8
2

�

C
�

8
3

�

.

4. Hint: wt.v ˚w/ equals the number of positions in which the two words differ. Argue

that the right side of the identity computes this as well, and note that .v � w/i D 1 if

and only if v and w both have a 1 in their i -th position.

7. You need at least 65536D 216 codewords, so 2m �m� 1 > 16 if and only if m > 5.

You should use the Hamming .31; 226; 3/ code. Each codeword is 31 bits long. The

percentage of codewords you need relative to the number of codewords available in

this code is 216=226 � 0:1%.

8. (a) The minimum weight of a nonzero linear combination is 1, so the minimum dis-

tance is 1. This code does not correct any errors.

10. Hint: First explain why jCj > 2 implies that there must be two codewords that agree

in at least one place. What then does this imply about the minimum distance?

Section 7.5

2. Hint: You will need to use the fact that the submatrix A11 shown in (7.9) is the in-

cidence matrix of a symmetric .11; 6; 3/ design and also that symmetric designs are

linked. Treat the case when the last row is involved separately.

3. Hint: Revisit the proof of the sphere packing bound in Section 7.4.
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Section 8.1

2. height.2n/ D nC 1 and the number of maximum-sized chains is nŠ.

3. Dn is a total order if and only if n is prime.

5. (b) height. OP / D 2C height.P / and width. OP / D width.P /

7. Hint: The answer is 3n. Break up the ordered pairs into cases according to the size of

their first element. That is, count all .I; J / with jI j D 0, then count all .I; J / with

jI j D 1, etc.

9. Antisymmetric: Assume P1 D fB1; : : : ; Brg and P2 D fC1; : : : ; Csg are partitions

of Œn�, and that P1 � P2 and P2 � P1. Consider any block Bi 2 P1. Since P1 � P2,

there is some block Cj 2 P2 for which Bi � Cj . Also, since P2 � P1, there is some

block Bk 2 P1 for which Cj � Bk. This means Bi � Cj � Bk , or that Bi � Bk .

But P1 is a partition of Œn�, so Bi D Bk which in turn means Bi D Cj . This proves

that any block of P1 is a block of P2. A similar argument shows that any block of P2

is a block of P1. Therefore P1 D P2.

Also, …n is a lattice.

10. (a) They are not necessarily disjoint.

(b) Hint: Prove by contradiction.

13. This is false.

Section 8.2

1. X D f2; 3; 4; 6; 16; 18; 24g is one set that works.

2. Hint: There are 16.

5. Hint: Write Dpk D fp0; p1; : : : ; pkg. Define � W Dpk �! ŒkC 1� by �.pi / D iC 1,

for all i satisfying 0 6 i 6 k. Prove that this is a bijection and then that pi jpj if and

only if i C 1 6 j C 1.

7. (a) Reflexive: Let x 2 Bn. Since xi 6 xi for all i 2 Œn�, it follows that x 6 x.

Antisymmetric: Let x; y 2 Bn and assume x 6 y and y 6 x. This means that

xi 6 yi and yi 6 xi for all i 2 Œn�. Therefore xi D yi for all i 2 Œn�, so x D y.

Transitive: Left for you.

(b) .Bn; 6/ Š 2n

Section 8.3

1. height.10/ D 10 and width.10/ D 1; height.…4/ D 4 and width.…4/ D 7. For …4,

use Figure 8.4 to give an antichain cover of size 4 and a chain cover of size 7.

2. For the first poset, draw a row of eight elements then add a ninth element above this

row; connect that ninth element to each of the eight elements below it. For the second

poset, use a total order but with a “Y” at the top and and upside-down “Y” at the

bottom. For the third, the set f1; 2; 3; 12; 18; 36g ordered by divisibility works.

3. The poset on the left has height 5 and width 3.
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Section 8.4

1. Draw the Hasse diagram. Every linear extension must have a 6 c 6 d 6 e and

b 6 c 6 d 6 e. So this poset only has two linear extensions: a 6 b 6 c 6 d 6 e

and b 6 a 6 c 6 d 6 e.

2. Hint: Draw the Hasse diagram for the n D 3 and n D 4 cases.

3. dim.…3/ D 2

5. Let x1 6 x2 6 � � � 6 xn be the linear extension created by the algorithm. For sake of

contradiction, suppose xi 6 xj in P but xj < xi in the linear extension. This means

that at the time xj was added to the linear extension, (1) both xj and xi had not yet

been deleted from the poset, and (2) xj was a minimal element. But xi 6 xj in P ,

which means xj is not minimal.

6. Hint: The argument we used to show that any realizer of S4 requires at least four

linear extensions easily extends to Sn. To find a realizer, extend the pattern of those

in Figure 8.6.

9. (a) You need to put every element that is under x0 below every element that is above

y0. That is, add every ordered pair .w; z/ where w 6 x0 and y0
6 z.

(c) If P0 is a total order, then it is a linear extension of P that has x0
6 y0, as desired.

If it is not a total order, let x00 and y00 be two incomparable elements in P 0. Repeat

the procedure until you get a total order.

12. (a) 5 can be represented by five concentric boxes.

(b) Hint: Arrange the (up to four) linear extensions on the positive and negative x-

and y-axes in a certain way. How then should you construct the box for each

element?

Section 8.5

1. (a) false

(b) true

3. For the poset on the left, label the minimum element 1, the one above that 2, then 3

and 4 on the left and right, then 5 and then label the maximum element 6. The Möbius

matrix is

M D

0

B
B
B
B
B
B
B
@

1 2 3 4 5 6

1 1 �1 0 0 0 0

2 0 1 �1 �1 1 0

3 0 0 1 0 �1 0

4 0 0 0 1 �1 0

5 0 0 0 0 1 �1

6 0 0 0 0 0 1

1

C
C
C
C
C
C
C
A

4. �.1:2:3:4; 1234/D �6

6. The underlying poset is the total order 5 and its Möbius function is given in Theorem

8.5.3. After applying Möbius inversion, the solution is x1 D s1, x2 D s2 � s1, x3 D
s3 � s2, x4 D s4 � s3, x5 D s5 � s4.
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Section 8.6

1. Hint: First prove that each of 5kC1 � 1 and k9 C k5 C 2k3 is divisible by 4.

3. This is essentially the same as Exercise 7 of Section 8.2.

5. Hint: The idea is that if you divide each of the integers in the interval Œa; b� by a, then

the interval Œa; b� in D looks exactly like the interval Œ1; b
a
� in D. The isomorphism is

� W Œa; b� �! D b
a

given by �.x/ D x
a

.
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List of Notation

This table includes most of the notational symbols used in the book as well as the page

where they are defined.

Notation Page Notation Page

Œ1p1 2p2 � � �npn � 76 Kn 228

2A 5 Kr;s 228

2n 318 Ln 99, 152

a � b .mod n/ 33 �.x; y/ 350

A � B 25 Œn� 2

fakgk>0 107 n 319

B.n/ 68 nŠ 7, 52

Bn 299 N>.�/ and ND.�/ 86, 352

.b; v; r; k; �/ 273 n �! .a; b/ 263

C A 201 n.G/ 226

Cn 229 nk 4, 52

Cn 339 .n/k 7, 52

co.f / 26
�

n
k

�

9, 59

Dc 276
��

n
k

��

11, 60

ı.G/ 226
�

n
t1;t2;:::;tk

�

142

�.G/ 226 orbG.f / 202

dG.v/ or d.v/ 226 p.G; k/ 253

dim.P/ 339 P.n/ 77

�kf .n/ 171 P.n; k/ 76

Dn 318 Pn 229

dom.f / 26 …n 324

ı.x; y/ 350 P Š Q 328

e.G/ 226 P �Q 355

f W A �! B 25 P D .X; 6/ 317

fixG.�/ 202 PŒY � D .Y; RŒY �/ 323

Fn 125, 152 R.a; b/ 263

Jf .x/Kxk 114 rng.f / 26

Jf .x/Kxk=kŠ 121 s.n; k/ 168

G Š H 232 S.n; k/ 67

h.v; w/ 299 Sn 338
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386 List of Notation

Notation Page Notation Page

Sr.v/ 300 x <� y 319

stabG.f / 214 x k y 321

S.t; k; v/ 296 x _ y 324

STS.v/ 291 x ^ y 325

t-.v; k; �/ 294 Œx; y� 349

u � v 226 �.x; y/ 348

.v; k; �/ 275 Z.z1; z2; : : : ; zm/ 218

�.G/ 251
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adjacent, 226

antichain, 321

cover, 332

Apéry, R., 66

Appel, K., 261

asymptotically equivalent, 181

Bell, E. T., 75

Bell numbers, 68, 165

BIBD, 273

bijection, 27

principle, 27

bijective proof, 27

binary number, 5

binary operation, 32, 190

binomial theorem, 63, 109

extended, 147

biplane, 290

block

of a design, 272

of a partition, 35, 67

Bombieri, E., 66

Bose, R., 281

box order, 344

Bruck-Ryser-Chowla (BRC) theorem, 284, 290

Cartesian product, 25

Catalan numbers, 152, 247

Cauchy-Frobenius-Burnside

(CFB) theorem, 203

Cayley, A., 238, 249

Cayley’s formula, 240

chain, 321

cover, 334

chromatic

number, 251

polynomial, 253, 363

circle order, 344

circular arrangements, 36

clique number, 260

code

binary, 299, 301

error-correcting, 271, 301

existence of perfect, 315

existence of perfect binary, 311

Golay, 311ff

Hamming, 306, 315

linear, 304

nonlinear, 311

non-trivial, 303

over a finite field, 315

perfect, 303

ternary, 314

trivial, 303

codeword, 299

codomain, 26

colorable, 250

coloring of a graph, 250

proper, 250

combination, 9

combinatorial proof, 53

comparable, 321

composition of an integer, 151

connected, 231

convolution formula, 116, 122

counting the complement, 19

covers, 319

cycle index, 218

cycle notation for permutations, 169, 189

decoding, 308, 316

minimum distance, 300

degree, 226

derangement, 91, 93, 132

design, 272

balanced, 273

balanced incomplete block (BIBD), 273

basic necessary conditions, 275

basic parameters, 279

complementary, 276

complete, 273

cyclic, 277

derived, 288

dual, 289

incomplete, 273

linked, 287

regular, 273

387
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388 Index

residual, 287

resolvable, 281

symmetric, 284

t -design, 294

uniform, 273

difference operator, 171

difference table, 172

differential equation, 131, 132, 165

Dilworth’s

lemma, 337

theorem, 332ff

Dirichlet, P., 48

disconnected, 231

distance

Hamming metric, 299

minimum, 301

distribution, 49

ordered distribution, 58

table of problems, 81

domain, 26

down-set, 328

edge, 225

endpoint, 226

enumeration, 1

equivalence class, 34

equivalence principle, 37

equivalence relation, 33

Erdős, P., 48, 267

Erdős-Ko-Rado theorem, 331

Erdős-Szekeres theorem, 45, 47-48, 337

Euler, L., 32, 82, 120, 124, 238

extremal set theory, 331

de Fermat, P., 261

Fermat-Wiles theorem, 66, 261

Ferrers diagram, 175

conjugate of, 176

Fibonacci numbers, 125, 152

formula, 160

Fisher, R., 281

Fisher’s inequality, 291

fixed point set, 202

forest, 238

function, 25

bijective, 27

composition, 30

Euler phi, 364

inverse, 31

k-to-one, 43

Kronecker delta, 350

Möbius, 350

one-to-one, 27

onto, 27

zeta, 348

Fundamental Theorem of Arithmetic, 359

Galois field, 315

generating function

ordinary (OGF), 107

exponential (EGF), 121

geometric series, 105

Golay, M., 311

graph, 225

bipartite, 230

complement of, 236

complete, 228

complete bipartite, 228

component of, 231

cube, 237

cycle, 229

Grötsch, 229

path, 229

Petersen, 229

regular, 226

greatest lower bound, 324

ground set, 317

group, 190

action, 201

commutative (Abelian), 190

cyclic, 198

dihedral, 197

order of, 191

symmetric, 190

table, 195

Haken, W., 261

Hamming, R., 308

handshaking lemma, 227

Hasse diagram, 319ff

hat-check problem, 91, 93

height of an element, 332

hexadecimal number, 14

identity relation, 34

incidence algebra, 349

incident, 226

inclusion-exclusion principle, 89, 92, 346, 357

incomparable, 321

induction, 95

strong induction, 99

interval, 349

isomorphism

graph, 232

poset, 328

join (_), 324
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Kirkman, T., 276, 281

Kirkman’s schoolgirls problem, 281

lattice, 325

divisibility, 318

properties, 325

subset, 318

leaf, 238

least upper bound, 324

linear extension, 339

list, 3

k-list, 3

loop, 236

Lucas numbers, 99, 152

formula, 160

matrix

adjacency (of a graph), 234

generator (of a code), 304

incidence (of a design), 281

Möbius (of a poset), 347

zeta (of a poset), 347

matrix-tree theorem, 248

maximal element, 322

maximum element, 322

meet (^), 325

metric, 299

minimal element, 322

minimum element, 322

Möbius function, 350

number-theoretic, 360

of a product, 356

of a total order, 351

of the divisibility lattice, 360

of the subset lattice, 357

Möbius inversion principle, 94, 352ff

de Moivre, A., 94

multigraph, 235

multinomial

coefficient, 142

theorem, 144

multiple edges, 236

multiset, 10

n-set, 3

octal number, 14

one-to-one correspondence, 27

orbit, 202

ordered by

divisibility, 318

inclusion, 318

refinement, 323

ordered

distribution, 58, 75

partition of a set, 75

parameter theorem for t -designs, 295

part of a partition, 76

partial fraction decomposition, 129, 179

partite set, 230

partition

conjugate of, 176

of a set, 35, 67, 145

of an integer, 76, 120, 175

self-conjugate, 177

partition numbers, 76ff, 175ff

triangle, 79

asymptotic approximation, 184

Pascal, B., 66

Pascal’s

identity, 60, 65, 143

triangle, 61

path, 231

pattern inventory, 219ff

perfect matching, 297

permutation, 7

cycle notation, 169, 189

k-permutation, 7

of a set, 7

two-line form, 189

pigeonhole principle, 40ff

poker, 21, 24

Pólya, G., 152, 187, 224

Pólya’s enumeration theorem, 220

poset, 317

crown, 339

dimension, 339

embedding in R
n, 345

height, 321

locally finite, 349

product, 355

standard example, 338

width, 321

power series, 108

formal, 108, 125

power set, 5

product principle, 5, 17

projective plane, 289

Prüfer sequence, 240

Ramsey, F., 269

Ramsey theory, 40, 48, 261

Ramsey problem, 263

range, 26

realizer, 339
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recurrence relation, 97, 125, 133

solving first-order linear, 135

solving second-order linear, 138

relation, 25

inverse, 31

Rota, G.-C., 364

Shidoku, 23

da Silva, D., 94

Sperner’s theorem, 330

sphere, 300

sphere packing bound, 303

stabilizer, 214

Steiner system, 296

Stirling, J., 75

Stirling numbers

of the first kind, 168

of the second kind, 68, 163

Stirling’s

formula, 75

triangle of the first kind, 168

triangle of the second kind, 71

subgraph, 229

subgroup, 194

cyclic, 199

trivial, 194

subposet, 323

Sudoku, 1

sum principle, 17

Sylvester, J. J., 94, 238

ternary number, 14, 16

total order, 319

tree, 238

binary, 246

spanning, 248

ternary, 249

triangulation, 148

triple system, 291

Steiner, 276, 291

type vector, 76

uniqueness of polynomials, 63, 66

Vandermonde’s formula, 62, 117

variety, 272

vertex, 225

isolated, 226

walk, 231

weight of a word, 300

well-ordering principle, 100

word, 3
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